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Abstract 

THE QUANTITATIVE GENETICS OF NELRODEVELOPMENT: 
A MAGNETIC RESONANCE IMAGING STUDY OF CHILDHOOD AND 

ADOLESCENCE 

By James E. Schmitt 

A Dissertation submitted in partial filfillment of the requirements for the degree of 
Doctor of Philosophy at Virginia Commonwealth University. 

Virginia Commonwealth University, 2007 

Major Directors: 

Kenneth S. Kendler, M.D. 
Distinguished Professor, Departments of Psychiatry and Human Genetics 

and 

Michael C. Neale, Ph.D. 
Professor, Departments of Psychiatry and Human Genetics 

Understanding the causes of individual differences in brain structure may give clues 

about the etiology of cognition, personality, and psychopathology, and also may identify 

endophenotypes for molecular genetic studies on brain development. We performed a 

comprehensive statistical genetic study of anatomic neuroimaging data from a large 

pediatric sample (N=600+) of twins and family members from the Child Psychiatry 

Branch at the NINIH. These analyses included variance decomposition of structural 

volumetric endophenotypes at several levels of resolution, voxel-level analysis of cortical 
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thickness, assessment of gene by age interaction, several multivariate genetic analyses, 

and a search for genetically-mediated brain-behavioral relationships. 

These analyses found strong evidence for a genetic role in the generation of individual 

differences in brain volumes, with the exception of the cerebellum and the lateral 

ventricles. Subsequent multivariate analyses demonstrated that most of the genetic 

variance in large volumes shares a common source. More subtle analyses suggest that 

although this global genetic factor is the principal determinant of neuroanatomic 

variability, genetic factors also mediate regional variability in cortical thickness and are 

different for gray and white matter volumes. Models using graph theory show that brain 

structure follows small-world architectural rules, and that these relationships are 

genetically-determined. Structural homologues appeared to be strongly related 

genetically, which was M h e r  confirmed using novel methods for semi-multivariate 

quantitative genetic analysis at the voxel level. 

Studies on interactions with age were mixed. We found evidence of gene by age 

interaction on frontal and temporal lobar volumes, indicating that the role of genetic 

factors on these structures is dynamic during childhood. Analyses on cortical thickness at 

a finer scale, however, showed that environmental factors are more important in 

childhood, and environmental changes were responsible for most of the changes in 

heritability over this age range. When assessing the relationship between brain and 

behavior, we found weak negative genetic correlations and positive environmental 

correlations between IQ and cortical thickness, which appear to partially cancel each 

other out. More complex models allowing for age interactions suggest that high and low 

xii 
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IQ groups have different patterns of gene by age interactions in concordance with prior 

literature on cortical phenotypes. 

. . . 
X l l l  
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"The brain is the last and grandest biological frontier, the most complex thing we have 
yet discovered in our universe. It contains hundreds of billions of cells interlinked 
through trillions of connections. The brain boggles the mind." 

--James D. Watson, Discovering the Brain, 1992 

"It is essential to understand our brains in some detail ifwe are to assess correctly our 
place in this vast and complicated universe we see all around us" 

--Francis Crick, What Mad Pursuit, 1988 
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One of the great gifts to humanity is the capacity to contemplate the nature of the 

universe and our place in it. It is likely no exaggeration to say that every person who has 

seen the sunrise or surveyed the earth fiom a mountaintop, every child on a beach, in 

short every one of the billions of humans now on this planet and all who preceded us 

have considered their origins and what makes them who they are. Such contemplations 

are among the central questions of philosophy, religion, and science, three disciplines 

that, until quite recently in human history, were inseparable. Modem science differs 

somewhat fiom the other two in its insistence on empirical data and acceptance of the 

subsequent limitations of that constraint, or as the 1 gth century biologist Thomas Henry 

Huxley noted, "science is simply common sense at its best that is, rigidly accurate in 

observation, and merciless to fallacy and logic" (Huxley, 1880). 

Neuroscience, broadly speaking, follows the same general pattern as other scientific 

disciplines, but it is inevitably more intimate. We can witness firsthand the remarkable 

neurodevelopmental changes transform ourselves and our children from infants into 

artisans and mathematicians. Our brains enable us to perceive the universe, and our 

perceptions are colored by our neural organization. Along with opposable thumbs and a 

few other structural differences, the brain constitutes that which most identifies the 

human species as unique on our planet. But presumably, differences between human 

brains also are largely responsible for our uniqueness as individuals: our personalities, 

cognitive and perceptual abilities, and susceptibilities to mental disease that distinguish 

one human fiom one another. These individual differences in brain structures, their 
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etiology, their dynamics, and their relationship to behavior are the central focus of this 

thesis. 

This work represents but the first volume in a large and ongoing study of the nature of 

pediatric development by Jay Giedd and his laboratory at NIMH, in collaboration with 

the Virginia Institute of Psychiatric and Behavioral Genetics (VIPBG) at the Medical 

College of Virginia. Within these pages, we begin address some of the most basic 

questions on what factors contribute to individual differences in brain structure and how 

these factors interact to generate the complexities of neural architecture. Several of the 

studies represent the first work of their kind. It is my hope that, like an explorer in the 

wilderness of a new frontierland, the reader will find excitement and novelty in the pages 

to follow. But also, just as the ancient maps of Herodotus, Ptolemy, or even Columbus 

represented crude approximations of geographic reality, caution is warranted in trusting 

the unverified details too greatly. Future "expeditions7' to this world will be required to 

truly understand the role of genes on brain development. 

The overall format of this document is something of a hybrid between a traditional 

Arnerican/British "book" style thesis and the continental European model, which 

represents a collection of scholarly papers. Though most of the work represents 

manuscripts, published or otherwise, attempts have been made to minimize repetition in 

the methods sections and redundancies in the discussion. Many of these manuscripts were 

primarily written by others; I have rewritten them, largely to give me a somewhat illusory 

sense of ownership over what is in reality a highly collaborative document. As this work 
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lies at the intersection of several scientific disciplines, it is likely that even some experts 

will find at least some material unfamiliar. In certain places, I have attempted to provide 

some background about the underlying sciences, without dwelling on them. Finally, the 

interested reader with limited time is directed to a review article by Giedd et al., which 

covers most of the principle findings reported here, but is rather more succinct (Giedd, 

Schrnitt, & Neale, 2007). 

Details on the Dataset 

The analyses reported in the following chapters utilize data fiom the Pediatric Twin 

Study at the Child Psychiatry Branch of the National Institute of Mental Health (NIMH). 

This study represents an ambitious attempt to acquire both neuroimaging and cognitive 

data on at least 100 monozygotic (MZ) and 100 dizygotic (DZ) pediatric twin pairs, 

repeated for at least three time points throughout childhood. The findings reported here 

are based on cross sectional data fiom the first time point of data acquisition. 

The subjects in this study were recruited by means of local and national 

advertisements for participation in an ongoing longitudinal pediatric imaging study. 

Advertisements specified that the MRI study sought twins between the ages of 5 and 

18, with no learning disabilities, neurological problems or behavioral disorders. The 

screening process involved phone interviews, behavioral questionnaires mailed to 

parents and teachers, an in-person clinical interview, family history assessment, as 

well as a physical and neurological exam. Exclusion criteria included having a 

lifetime history of physical, neurological, or psychiatric abnormalities, learning 
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disabilities, or psychiatric illness oneself, or in either one first-degree relative or more 

than 20% of second-degree relatives. Approximately one in four families responding 

to the ads met inclusion criteria. Twins were included in the analysis only if 

quantifiable MRI scans free from motion or other artifact were obtained on both twins 

at the same age. Written assent from the child and written consent from a parent were 

obtained for each participant. The study protocol was approved by the institutional 

review board of the National Institute of Mental Health. Zygosity was determined by 

DNA analysis of buccal cheek swabs using 9-2 1 unlinked short tandem repeat loci for 

a minimum certainty of 99%, by BRT Laboratories, Inc. (Baltimore, MD). 

For some analyses, data from singletons, siblings of twins, or singleton families were 

used. Singletons and singleton family data were acquired as part of a pediatric study of 

normal development conducted by NIMH, using similar recruitment strategies and 

data acquisition methods. 

Image Acquisition: 

This project centers on data acquired via magnetic resonance imaging (MRI). MRI is a 

versatile radiological technology that enables the examination of soft tissues in vivo 

with extremely high contrast relative to other imaging modalities (Bushberg, Seibert, 

Leidholdt, & Boone, 1994). This feature, in combination with its lack of ionizing 

radiation and subsequent safety, makes MRI particularly useful for neuroanatomic 

studies on typical populations, especially children, as no clinical indication is required 

in order to gather data ethically. 
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The capabilities of MRI are based on the physics underlying nuclear magnetic 

resonance (NMR). Briefly, all atoms in the universe that contain an odd number of 

nucleons e.g. elemental hydrogen ('H), "0, or 2 3 ~ a ,  generate small magnetic fields, 

which can interact with larger fields and be manipulated with electromagnetic waves. 

Anatomic imaging typically employs hydrogen due to its large magnetic moment and 

abundance throughout the body, both in aqueous solutions and in lipid. In the 

presence of a large external magnetic field, protons align either with or against the 

field and precess, much like a spinning top in the presence of a gravitational field. The 

application of electromagnetic radiation (i.e. light) of the appropriate frequency 

simultaneously excites protons to a higher energy state, as well as synchronizes their 

precessions. Both the rate that protons relax to a lower energy state (TI) and the rate 

that they become unsynchronized in their precessions (T2) are measurable physical 

properties that are dependent on the capacity of protons to interact with other atoms, 

which in turn is affected by properties of tissue. Thus, measurement of T l  and T2 (as 

well as a few other parameters) provides a means of distinguishing between tissues 

with different molecular compositions. 

In the present study, all subjects were scanned on the same GE 1.5 Tesla Signa MRI 

scanner (1.5T = 15,000 gauss: for reference, the Earth's magnetic field is about .6 

gauss). A three-dimensional spoiled gradient recalled echo in the steady state (3D 

SPGR) imaging protocol was used for all subjects (axial slice thickness = 1.5 mrn, 

time to echo = 5 msec, repetition time = 24 msec, flip angle = 45 degrees, acquisition 
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matrix = 192 x 256, number of excitations = 1, and field of view = 24 cm). By phase 

shifting radio wave pulses, SPGR "spoils" the signal from proton precession and 

subsequently weights the signal towards the T1 properties of matter (Bushberg et al., 

1994), i.e. emphasizing differences in spin relaxation. T1 weighting is particularly 

good for creating gray versus white matter contrast, and along with high resolution (-1 

rnm3) is the reason why SPGR is often used in neuroanatomic studies. 

SPGR produces images that resemble actual brain appearance (Figure 1. l), and prior 

to image processing, a clinical neuroradiologist evaluated all of these scans for gross 

abnormalities. In this dataset, no abnormalities were identified. 

All MRI images are comprised of discrete units called voxels e.g. pixels that represent 

physical volumes. 3D SPGR is conceptually a 3-dimensional matrix of these discrete 

units, with the grayscale intensity of each voxel representing a scalar signal intensity 

at a particular spatial location. Thus, the raw image is a downsampled, digital version 

of the actual volumetric structure of the brain, and voxels can be clustered and their 

volumes added in order to estimate the volumes of larger structures. Voxels are 

generally organized into 2-dimensional slices based on the plane of acquisition, but the 

native 3D "cube" can be viewed from other perspectives, its surface projected onto a 

2D space, or transformed into standardized spaces. Details on specific image 

processing techniques will be discussed in later chapters. 
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Figure 1 .I : Examples of raw data generated with the SPGR pulse sequence. The top row 
represents the same coronal SPGR at several levels of magnification. At higher levels, the 
discrete nature of MRI information is apparent. The bottom row represents three 
representations of the same "skull stripped" image, axial, coronal, and a rendered surface. 

Cognitive testing 

Several psychometric variables have been assessed in the present dataset, which are 

summarized in Table 1.1. These tasks range from traditional metrics of general 

intelligence (IQ cognitive batteries), to tests of spatial working memory (CANTAB), tests 

of manual dexterity and attention (Trails), and handedness. Considered in total, these 

tasks represent measures of critical milestones in childhood development, and have direct 

implications to the pathophysiology of several of the most commonly-acquired 

psychiatric mental illnesses of childhood, namely autism, attention deficit disorder, and 

mental retardation. 
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Table 1 .I: Cognitive test batteries employed by the Giedd laboratory. Table courtesy of the Giedd 
laboratory 

Completed by 

Future Parent (P) or Present 

Measure DomainslPurpose Battery Battery Child (C) 

WASlNVlSCNVPPSl Intelligence X C 

Trails A & B 
Anennon, wsual searcn, moror 

function 

PANESS Handednessnaterality 

Fine motor 81 laterality 
Hand Dynamometer 

I '"'"" - -- 
Social Responsiveness 

Autistic Traits 
Scale (SRS) 

The chapters to follow examine the etiology of individual differences in several anatomic 

measures derived from MRI images, and to a lesser extent, cognitive measures. The 

focus on the population variance distinguishes this work from more well-established 

neuroimaging analyses on mean group differences. Or, to borrow from Plomin, DeFries 

and Fulker, "when we look at children, we see children, not the child" (Plomin, DeFries, 

& Fulker, 1988). In the next chapter we discuss some of the tools for the analyses of 

populations, and then follow with a review of extant studies on MRI data that employ 

them. 
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QUANTITATIVE GENETICS AND STRUCTURAL EQUATION 
MODELING IN THE AGE OF MODERN NEUROSCIENCE 

"The history of science is rich in the example of the usefulness of bringing together two 
sets of techniques, two sets of ideas, developed in separate contexts for the pursuit of new 
truth, in touch with each other." 

--J .  Robert Oppenheimer, Science and the Common Understanding. 

NEALE MC AND SCHMITT JE. QUANTITATIVE GENETICS AND STRUCTURAL EQUATION MODELING IN THE AGE 
OF MODERN NEUROSCIENCE. IN T. CANNON (ED.). THE GENETICS OF COGNITIVE NEUROSCIENCE PHENOTYPES. 
SOCIETY FOR NEUROSCIENCE CONFERENCE, SHORT COURSE 11. (2005). 
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The history of genetics and statistics largely overlap. Before the discovery of molecular 

genetic tools in the twentieth century, genetics was predominantly an inferential science. 

The development of appropriate statistical methods was a necessity for identifying 

heritable traits and to observe the effects of genes within populations. Today, despite 

technological advances in the basic sciences, the use of inferential statistics remains a 

powerful tool in elucidating thorny scientific questions, particularly when they involve 

extremely complex systems with multiple unknown or unmeasurable causal factors. 

Thus, statistical approaches retain great value when addressing general questions in 

genetics, psychology, neurobiology, and beyond. This chapter reviews the fundamental 

principles of behavioral genetics, with particular emphasis on methods central to this 

thesis. 
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Partitioning of Variance 

The general goal of the classical twin model is to divide the observed variance in a 

phenotype into genetic and environmental sources (Neale & Cardon, 1992). Since MZ 

twins are genetically identical, any observed variability between twins of a pair must be 

due to nongenetic factors (diet, childhood trauma, substance use, measurement error, 

etc.). Conversely, covariation between MZ twins could be caused by their genetic 

similarity, or alternatively by characteristics of the environment that both individuals 

have in common. Using MZ twins alone, it is impossible to disentangle these two 

possibilities. There are three unknowns (the contributions of genes, shared environment, 

and unshared environment) and only two statistics (the total phenotypic variance and the 

MZ correlation): 

2 2 where a , c , and e2 represent the proportion of the total observed phenotypic variance 

(Vp) due to additive genetic, shared environment, and unshared environmental sources, 

respectively. 

The addition of dizygotic (DZ) twins to the model provides a third statistic that allows 

one to separate genetic from shared environmental effects. Since DZ twins, as full 

siblings, share on average half of their genes identical by descent, one would expect that 

12 
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the genetic correlation driving inter-twin similarity to be half as strong in DZ twins 

relative to MZ. Therefore: 

The use of DZ twins, rather than full siblings, provides a better control on potential 

environmental factors (such as cohort effects) that could be heterogeneous within 

families. The twin model does assume that the factors influencing the shared environment 

are, on average, similar for MZ and DZ groups with respect to the phenotype of interest. 

Though often maligned, the Equal Environment Assumption has been shown to hold for 

most phenotypes examined, with traits such as choice of clothing representing notable 

exceptions (Evans, Gillespie, & Martin, 2002; Kendler, Heath, Martin, & Eaves, 1986). 

In this model, the genetic contribution to phenotype represents cumulative effects of 

multiple (in theory, infinite) genes, with each gene representing a small effect equal in 

magnitude to all other effects; thus their effects are additive and normally distributed 

within the population. Though such an assumption may seem unreasonable, a purely 

additive model will be well-approximated, even by a handhl of genes (Kendler & Kidd, 

1986). Additive genetic variance, sometimes called narrow-sense heritability, does not 

include dominance effects, which also can be estimated with quantitative genetic 

methodologies (see below). However, an additive model of genetic influence is more 

likely for complex traits, particularly those with normally distributed phenotypes. 



www.manaraa.com

Solving the simultaneous equations 1-3 provides formulae for estimating each variance 

2 2 component. a can be calculated as 2(cov, - cov,) , c as (2covDz) - cov, , and e2 as 

2 2 V, - cov, or simply V, -a - c . These statistics, often called Falconer estimates, can 

be usehl for generating a rough approximation of the sources of phenotypic variance 

prior to more involved analyses. Falconer estimates can be calculated using Pearson 

correlations when the phenotypic trait is continuous and normally distributed; in this case 

the total phenotypic variance is standardized to unity. For dichotomous or ordinal data, 

tetrachoric or polychoric correlations can be used (PROC FREQ option plcorr in SAS). 

As an example, Figure 2.1 represents a scatterplot of caudate nucleus volumes from the 

Giedd dataset. In general, the scatterplot shows a familial relationship in caudate volume. 

When the sample is split into MZ (blue) and DZ (red), there is a marked difference in the 

strength of the relationship based on zygosity, with Pearson correlations of 0.83 for MZ 

and 0.40 for DZ pairs. Using Falconer estimation, the vast majority of the variability in 

caudate volume (86%) appears to be generated by additive genetic factors. 
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Figure 2.1 : Scatterplot of caudate nucleus volumes for MZ (blue) and DZ (red) groups, 95% 
density ellipses are given for each group separately, and the corresponding Pearson correlation 
coefficients are given in the inset. 

Although usehl as a 'rule of thumb', there are at least eight problems with these 

algorithms for estimating components of variance. One, it is possible to obtain 

nonsensical estimates of the heritability, both greater than 1.0 and less than zero. Two, it 

takes no account of the relative precision of the c o v ~ z  and c o v ~ z  statistics, which may be 

unequal if the sample sizes differ or if the magnitude of the correlation is different, or (as 

is usually the case) both. Three, there is no assessment of whether the correlations are 

consistent with the additive genetic model. Four, it does not easily generalize to the 

multivariate case to permit the examination of why variables correlate with each other. 

Five, it is not easy to correct estimates for the effects of covariates such as age and sex. 
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Six, it does not generalize to extended twin studies that involve other relatives. Seven, it 

is inefficient when there are missing data and eight, it is not suitable for selected samples 

of twins. 

Structural Equation Modeling and Path Analysis 

Modem methods overcome these limitations by using more sophisticated computer 

software algorithms. Structural equation modeling (SEM) and its mathematically- 

equivalent visual analog, path analysis, represent techniques to model causal and 

correlational influences on both observed and unobserved (i.e. latent) traits. Most 

commonly used inferential statistics, such as regression, analysis of variance, correlation, 

and factor analysis are actually subset families of structural equation models. It can be 

considered a general framework for statistical analysis that is flexible enough to address 

specific hypotheses while simultaneously applying principles that are both 

mathematically elegant and easy to understand. Thus, an initial investment in learning 

SEM can pay off immensely, as it has broad applicability within many branches of 

science. SEM is typically used to generate a hypothesis-driven model of a process of 

interest, but more exploratory analyses also are possible. Though not developed until the 

mid-twentieth century, SEM has quickly pervaded the social sciences owed to its explicit 

treatment of measurement error and latent variables. 

Path analysis was invented by the great geneticist Sewell Wright and employs symbolic 

diagrams in order to explicitly describe inter-variable relationships (Loehlin, 1998). By 
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convention, measured variables are denoted by rectangles while latent variables are 

shown as circles. Though latent variables are not directly observed, their presence can be 

detected via their influences on variables that are measured. In addition to observed and 

latent variables, triangles are often used to denote constants, which can be useful for 

specifying means, while diamonds represent variables that moderate the strength of the 

influence of one variable on another. 

Two fundamental types of relationships between variables are defined; causal and 

correlational. While causal relationships are shown by single-headed arrows fiom causal 

variables to affected variables, double-headed arrows are used to show correlations. A 

special type of correlation, that of a variable with itself (i.e. variance) is shown as a 

double-headed arrow emanating fiom and returning to the same variable. For example, a 

simple regression model can be depicted as in Figure 2.2. The path coefficient 'a7 

quantifies the strength of the causal relationship; for every unit increase in the upstream 

variable, the downstream variable increases 'a' units. Thus, the path coefficient in this 

model is simplyp, the regression coefficient. If a second causal variable were added, then 

each path would represent a partial regression coefficient of a multiple regression model; 

the change in the dependent variable with unit change in one independent variable when 

the other is held constant. 
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Figure 2.2: Simple linear regression path diagram 

Though SEM can solve simple regression models, it is more typically used to investigate 

the sources of correlations between observed variables due to latent constructs. Consider 

the model in Figure 2.3, which presents a hypothesized causal structure for observed 

variables 1-4. The expected covariance between any two observed variables is easily 

calculated using "Wright's rules" that summarize which paths are allowed: 

Godliness Cleanliness 

1) Covariance is calculated as the sum of all possible paths between two variables, 

where each path represents the product of all path coefficients in the chain. 

2) After moving forward along a single-headed arrow, moving backward is illegal 

3) A path can contain at most one double-headed arrow 

4) Each variable can be crossed only once per path 

5) Whenever changing direction (from upstream to downstream) multiply the path 

by the variance of the upstream variable 

6) No loops 

a 
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Figure 2.3: Sample path diagram modeling the covariance between observed variables via a 
hypothesized structure of latent variables 

Using these rules, the expected variance-covariance matrix for Figure 2.3 is given in 

Table 2.1. The path diagram represents a mathematically complete representation of the 

hypothesized inter-variable relationships, and translates directly into matrix algebra. This 

point is extremely important to keep in mind. For example, variables 1-3 have no explicit 

variable-specific causal factors; thus the model creates the expectation that all of their 

variance is covariance (i.e. no residual variance). Though some path diagram come with 

the caveat that "residual paths are not given but assumed," such a practice can be 

dangerous, as can implicitly defining the variance of latent variables equal to unity. This 

is particularly true when performing computerized analysis, as computers have no 

capacity for understanding these subtleties. 
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Table 2.1: Expected variance-covariance matrix for the path diagram in Figure 2.3 

Varl  

Optimization 

Nearly all SEM analyses are solved empirically, using numeric optimization of a 

likelihood function to produce parameter values that provide the best fit to the data 

(Neale, Boker, Xie, & Maes, 2002). The general strategy of optimization begins with 

more or less arbitrary start values for all model parameters, calculation of an initial fit, 

and then systematic parameter modification and recalculation of model fit in an iterative 

fashion. There are several flavors of fit metrics (many are variants of least squares 

algorithms), but maximum likelihood (ML) methods are by far the most frequently used 

in behavioral genetic studies due to numerous appealing statistical properties. Most 

pertinent to the present discussion are 1) applicability to a broad range of statistical 

problems, 2) precise and unbiased parameter estimates with large sample sizes, 3) 

approximately normal distributions of parameter estimates, 4) robust and maximally 

informative in situations of missing data or ascertainment biases, and 5) straightfonvard 

hypothesis testing in many instances (Edwards, 1972). The primary disadvantage to ML 

is that it is computationally expensive, though this is becoming less important as 

processor speeds increase. 
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There are numerous SEM s o h a r e  packages available, though only a handful (e.g. 

LISREL, Amos, EQS, Mx) have the capability to perform multiple group analyses, which 

greatly facilitates twin studies. Of these, only Mx is available for free online (available at 

http://www.vcu.edu/mx), and two template script libraries have been constructed 

(http://www.psy.vu.nl/mxbib/ and http://www,vcu.edu/mx/examples.html), which 

include many of the most commonly used twin designs. 

The calculation of likelihood (L) varies based on the type of data available. When model 

fitting to covariance matrices, the goodness-of-fit function for each group is 

where N, is the sample size minus one for group g; S, is the observed covariance matrix 

and C, is the covariance matrix predicted by the model for the trial values of the twin 

covariance matrix. m is the number of phenotypes measured on each twin; ICI and Z-' 

denote the determinant and inverse of the matrix C, respectively. 

Mx also has the capability to fit to raw data, though the calculation of likelihood differs 

depending on whether the data is continuous or ordinal. Both methods are based in 

normal theory. For continuous data, if there are m observed variables on each twin, the 

normal probability density function of a column vector of twins observed scores xi is 

given by: 

2 1 
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-217112 
L = 12zCl exp (xi - u, )' C-' (xi - ui) I 
where C is the predicted covariance matrix and ui is the (column) vector of predicted 

means of the variables (Neale, 32767). This represents the likelihood of observing record 

i, given the population mean and variance and assuming normality. The joint likelihood 

of the N independent pairs in the sample is computed as the product of the likelihoods of 

all pairs. 

In order to calculate likelihood for ordinal data, a liability threshold model is used 

(Falconer, 1965). This model assumes that ordinal scores are the result of an underlying, 

normally distributed liability. An individual's ordinal responses are based on whether 

they are above or below particular thresholds. It follows that the likelihood for an 

observed vector of ordinal responses will be the integral of a multivariate normal 

probably density function, with limits corresponding to liability thresholds. For example, 

a diagnosis of lung cancer would occur in individuals with high liability due to 

heterogeneous sources (smoking, occupation, heredity, etc.) which places them above 

threshold for the development of disease. For a vector of observed ordinal responses, the 

likelihood of observing a twin pair concordant for lung cancer would be: 
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where 4 is the (standardized) multivariate normal probability function (9, and tl and t2 

represent liability thresholds for twin 1 and twin 2, respectively. In practice, -2*ln(L) is 

computed rather than L, both for pragmatic reasons as well as for the favorable statistical 

behavior described below. 

A particularly useful property of using ML is the ability to easily test the importance of 

subcomponents of a given model using a traditional X2 hypothesis test. This is because 

the difference in -2*ln(ML) between a model and a simplified submodel (by removing 

one or more parameters, for example) will, in most cases, asymptotically follow a X2 

distribution with degrees of freedom equal to the difference in the number of parameters 

between models. If the models are structurally unrelated (one model is not a 

simplification of the other), however, then an alternative comparison statistic is required. 

Two of the most popular are Akaike's Information Criterion (AIC) and the Bayesian 

Information Criteria (BIC) which reward parsimony in models according to Occam's 

Razor (Akaike, 1987; Spiegelhalter, Best, Carlin, & van der Linde, 2002). Like the X2 

test, these statistics are based on the ML. 

SEM and twins 

Path diagrams can be constructed for the classical twin study (Figure 2.4). Three latent 

variables are defined, A, C, and E, representing additive genetic, shared environmental, 

and unique environmental dimensions, respectively (Evans et al., 2002; Neale et al., 
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1992). It should be apparent that the expected variance and covariance for both MZ and 

DZ twins is the same in this model as before. However, the SEM framework provides all 

of the favorable properties described previously, and will provide more accurate 

parameter estimates. Additionally, parameters a and/or c can be removed from the model 

to generate submodels that can be tested via X2. 

Figure 2.4: The ACE twin model 

For example, the data from the caudate nucleus volume example can be reanalyzed in 

Mx. ML parameter estimation gives estimates of 0.87,0.00, and 0.42 for path coefficients 

a, c, and e, respectively. The variance in phenotype due to A, C, and E is simply the 

square of the path coefficients (since latent variances are standardized to unity), giving 

values of 0.76,0.00, and 0.18. To determine the proportional variance, each variance 
24 
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component is divided by the total phenotypic variance (.94) for estimates of a2 =.81, c2 

=.00, and e2 =.19. Removing the path 'a' produces a statistically significant worsening in 

the likelihood (x: = 29.53, p <.0001), while removing 'c' has no effect (x: = 0, 

p=.9999). Thus, there are is substantial evidence of genetic effects on the population 

variability in caudate nucleus volumes, but no evidence for shared environmental effects. 

SEM also can theoretically be used to test for dominance or epistatic effects. Like other 

latent factors, the contributions of dominant genes to phenotypic variance will have 

predictable effects on MZ and DZ covariance, since the probability of twins inheriting 

both alleles at a loci identical by descent is unity in MZ and only one-quarter in DZ. 

However, dominance effects are confounded with the shared environment in a classical 

twin design and cannot be estimated simultaneously. One solution is to compare the 

ACE and ADE model via goodness of fit statistics. In a twins-only design, however, the 

power to detect dominance effects can be quite weak (in part because dominance effects 

are typically small for complex traits). An extended twin design can increase power. 

Extensions to Classical Univariate Twin Models 

The flexibility of path analysis allows for numerous extensions of twin models. Perhaps 

the simplest is to regress out potentially confounding factors from an otherwise 

straightforward analysis. In the caudate example above, sex was unbalanced between MZ 

and DZ; with a few changes to the Mx script, the effects of sex on mean brain volumes 

could be taken into consideration. If influences on mean effects are more then a nuisance, 

2 5 
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it may be useful to test these factors importance to the model fit via a likelihood ratio X2. 

For example changes in mean brain volumes with age would naturally be of interest in a 

pediatric or geriatric sample. Though one could achieve similar results by first 

performing a multiple regression and then using the residuals in a subsequent variance 

components analysis, adding regression to the SEM model itself has the advantage of 

estimating all parameters simultaneously, which allows more freedom to determine the 

best fit to the data. 

Figure 2.5: The ACE model expanded to allow for interaction effects of moderator M. This model 
also includes a means regression (below phenotype variables) that allows for a linear effect of the 
moderator on the group mean. 
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Twin data also can be used to identify gene by environment (g x e) interactions. There are 

many methods attempting to do so; the most elegant analysis was probably designed by 

Jinks and Fulker, in which a correlation between MZ twin phenotypic differences and 

phenotypic sums is indicative of interaction (Jinks & Fulker, 1970). This method is 

limited because C x E interactions also may produce statistically significant correlations 

(Evans et al., 2002). A novel approach using extensions of the ACE model is rapidly 

gaining popularity (Purcell, 2002). The principle is similar to regression, but rather than 

modulating the mean phenotypic value, the moderator variable adjusts the magnitude of 

the influence of the latent variables A, C, and E on phenotype (Figure 2.5). Thus, in the 

interaction model, the influence of the latent variable A on phenotype for individual i and 

moderator variable M is a,  + a ,  * M i  rather than simplya, . Since the effects of these 

latent variables are inferred through phenotypic variance and cross-twin covariance, the 

result of the expanded g x e model is to allow for changes in variance (i.e. 

heteroscedasticity) and covariance of phenotype along the dimension of the moderating 

environmental trait. The twin design allows for the determination of which variance 

component(s) are responsible for the interaction. 

Multivariate Analyses 

Though multivariate twin analysis can be substantially more complex than what has been 

described thus far, the same principles of path modeling are used (Neale et al., 1992). 

Multivariate models with SEM are often simple extensions of the ACE model. The 

2 7 
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classical twin model itself is of course technically multivariate, which is the source of its 

ability to parse variance. The next conceptual extension would be to run multiple 

"univariate" twin models for separate variables of interest in parallel; this model would 

be useful, for instance, if one wanted to test whether additive genetic variance is equal for 

different phenotypes (Figure 2.6A). A "univariate in parallel" model assumes no 

covariance between different variables, however. In a true multivariate design, we also 

obtain information about cross-twin, cross-trait correlations that allows for the 

determination of which underlying factors cause phenotypes to covary. Multivariate 

modeling also increases the precision of parameter estimates, since far more statistics are 

generated. These properties are useful for assessing the underlying causes of 

cormorbidity, or for modeling changes in phenotypes over time with longitudinal designs. 

There are three commonly used multivariate factor models in behavioral genetics 

analysis, the Cholesky decomposition, the independent pathways (i.e. biometric) model 

and the common pathways (i.e. psychometric) model; path diagrams for each are given in 

Figure 2.6. The most parameterized is the Cholesky decomposition (Figure 2.6B), which 

deconstructs any n x n positive definite variance-covariance matrix into an n x n 

triangular matrix, postmultiplied by its transpose, and places few a priori constraints on 

the fitting of the data (Evans et al., 2002; Neale et al., 1992). Cholesky models are 

typically used for bivariate analyses, as a null model with which to compare more 

restrictive models, or to calculate unbiased genetic correlations. 



www.manaraa.com

Figure 2.6: Examples of extensions into multivariate analyses. For simplicity, only one member of 
a twin family is shown in each model. (A) Univariate analyses run in parallel with four observed 
variables. There is no (modeled) covariance between phenotypes. (B) Cholesky decomposition, 
with only genetic factors shown. The triple Cholesky would include a series of C and E factors 
with the same pattern as A. (C) Independent pathways model. (D) Common pathways model; the  
influences of A, C, and E are mediated through a common, latent phenotype (LP). 

Independent pathways models (IPM) allow genetic, shared environmental, and unique 

environmental common factors to affect observed variables directly, while in common 

pathways models (CPM) these factors exert their influence through a shared, latent 

phenotype (Figure 2.6C and D). In both models, each observed variable is permitted a 

residual variance term, which can also be parsed into A, C, and E. While IPMs are 

conceptually simpler, CPMs, require fewer parameters and thus are favored by the rules 

of parsimony. Both CPMs and IPMs are nested submodels of the Cholesky 

decomposition, and for a given number of common factors, the CPM is nested within 

IPM. Depending on the number of observed variables, both of these classes of models 
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can be expanded to allow for multiple genetic, shared environmental, or unique 

environmental common factors. 

Conclusion 

Quantitative genetics methodology has broad applicability to many biological questions. 

Twin and family designs can be useful for understanding complex, polygenic traits and to 

understand the sources of covariance between phenotypes. This overview gives only a 

taste of the potential of variance components analyses and SEM; numerous other 

extensions are possible such as applications in molecular genetics, longitudinal study 

designs, inclusion of extended families, research into comorbidity, and psychometric 

modeling, such as latent class and latent trait analysis (Boomsma, Busjahn, & Peltonen, 

2002; Takane & de Leeuw, 1987). In the future, research into brain and behavior 

promises to become increasingly complex and interdisciplinary; the development of 

powerful mathematical tools will provide the means to cope with the inevitable flood of 

heterogeneous information that modem instruments will provide. 



www.manaraa.com

REVIEW OF TWIN AND FAMILY STUDIES ON NEUROANATOMIC 
PHENOTYPES 

"More attention to the History of Science is needed, as much by scientists as by 
historians, and especially by biologists, and this should mean a deliberate attempt to 
understand the thoughts of the great masters of the past, to see in what circumstances or 
intellectual milieu their ideas were formed, where they took the wrong turning or stopped 
short on the right track." 

--Ronald A. Fisher, "Natural selection from the genetical standpoint." Australian 
Journal of Science 22, 16-17, 1959. 

SCHMITT JE, EYLER LT, GIEDD JN, KREMEN WS, KENDLER KS, AND NEALE MC. REVIEW OF TWIN AND 
FAMILY STUDIES ON NEUROANATOMIC PHENOTYPES AND TYPICAL NEURODEVELOPMENT. TWIN RESEARCH 
AND HUMN GENETICS. SUBMITTED. 
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Investigations into the biology of typical neurodevelopment have greatly advanced the 

understanding of childhood psychiatric diseases. Yet despite extraordinary efforts to 

identify the molecular genetic factors influencing variability in human neuroanatomic 

volumes, this approach, thus far, has had limited success. Well-established behavioral 

genetic methodologies provide a means for investigating relationships between brain and 

behavior from a global perspective. Behavioral genetics, however, has only just begun to 

address neuroanatomical questions and to explore the associations between volumetric 

data and behavioral measures. Knowledge of heritability of brain endophenotypes in 

children is particularly limited. This chapter reviews the extant studies that report on the 

relative contributions of genetic and environmental influences on brain volumes via 

magnetic resonance imaging. 
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Careful studies of familial relationships have generated a wealth of information on the 

latent causes of individual differences. This is especially true for complex traits, in which 

specific underlying causes (such as a single gene or specific environmental factor) play 

relatively minor roles in creating variability within populations. Behavioral traits, 

including both psychological and psychiatric variables, are particularly well-informed by 

such an approach, as their origins promise to be quite complex in most respects. 

Numerous familial studies, particularly those using twin designs, have provided strong 

evidence that a multitude of human behavioral traits are strongly influenced by our 

genetic makeup (Boomsma, Busjahn, & Peltonen, 2002; Strachan & Reed, 2004; Sullivan 

& Kendler, 1999). Yet despite extensive research on behavioral phenotypes, familial 

studies into neurobiological characteristics have been substantially more limited. 

Direct investigations into human neurobiology are particularly valuable, however, due to 

the lack of an ideal animal model to address questions on brain and behavior. As noted 

previously, MRI has numerous advantages relative to other imaging modalities, 

particularly in typical populations (Bushberg et al., 1994). MRI also allows for several 

options in image processing that enable both volumetric and morphometric analyses at 

multiple levels of resolution. The use of these novel imaging methodologies within a twin 

design allows for several important questions to be addressed, including 1) How genes 

and environment contribute to individual differences in human neuroanatomy, 2) How 

these effects change with age, and most importantly 3) how biological intermediates link 

genetic signals with behavior and cognition. In addition to theoretical interest, twin 
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designs using MRI could help to disentangle the complex interplay of genetic and 

nongenetic factors in the generation of neurobiological variability; as a novel 

endophenotype, MRI measures could increase the power to detect quantitative trait loci 

(QTLs) influencing critical behavioral functions and liability to psychopathology 

(Gottesman & Gould, 2003). 

Heritability of volumetric phenotypes 

To date, there have been approximately thirty twin studies on typical neurodevelopment 

using MRI. These studies employ a diversity of volumetric and morphometric techniques 

(Table 3.1). The analysis of control families from twin studies on pathological conditions 

provides some additional information, albeit limited, on MRI-derived phenotypes. 

Considered together, these studies have demonstrated a strong, statistically significant 

role of genes in the generation of the high variability in human brain volumes, 

particularly for larger structures (Baare et al., 2001a; Pennington et al., 2000; 

Pfefferbaum, Sullivan, Swan, & Carmelli, 2000). For example, BarrC et al. reported that 

the genome was responsible for .90, .82, and .88 of the total variance in total brain, gray, 

and white matter volumes, respectively, in 1 12 adult twin pairs (Baare et al., 2001 a). 

Figure 3.1 provides a between-study comparison of heritability estimates for these large 

structures. 
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Table 3.1: Comparison of qualitative study design characteristics for all existing twin studies using MRI in typically 
developing populations. "Substructures measured" is an indication of whether parcellation data for ROls are reported for 
structures other than total brain, intracranial volume, or hemispheric volumes. A 'Y' for brain and behavior is indicative that 
the study not only measured psychometric and imaging variables, but also attempted to describe brain-behavioral 
relationships. In contrast, the 'Multivariate Analyses' column identifies studies that model relationships between 
neuroanatomic variables. 

Pediatric Substructures Morphological Voxel-level Brain and Multivariate SEM-based Longitudinal 
Study Population? Measured? Measures? Measures? Behavior? Analyses? Statistics? Design? 

Reveley, 1984 N y2  N N N N Y N 

Oppenheim, 1989 N y2  y2 N N N N N 

Steinmetz, 1994 

Steinmetz, 1995 

Bartley, 1997 

Biondi, 1998 

Bonan, 1998 

Carmelli 1998 

Haidekker, 1998 

Tramo, 1998 

Carmelli, 1999 N N N N Y N N N 

Lohman, 1999 

Le Goualher, 2000 

Pennington, 2000 

Pffefferbaum, 2000 

Posthuma 2000 

Barre, 2001 

Pfefferbaum, 2001 

Sullivan, 2001 

Thompson, 2001 N N N Y Y N N N 

Carmelli 2002a N Y N N Y N Y N 

Carmelli 2002b N N~ N N Y N Y N 

Eckert, 2002 Y Y N N N N N N 

Geschwind, 2002 N Y N N y 7  N Y N 

Hulshoff Pol, 2002 N y2 N N N N Y N 

Posthuma 2002 N N N N Y Y Y N 

Reed, 2002 N y2  N N N N N N 

White, 2002 N Y N N N N N N 

Wright, 2002 N Y N N N y3' y3' N 

Scarnvougeras, 2003 N y2  N N N N N N 

Styner. 2003 N Y Y N N N N N 

Mohr, 2004 N N Y N N N N N 

Pfefferbaum, 2004 N y2 y2 N N Y Y y4 

Hulshoff Pol, 2006 N N N Y Y N Y N 

Giedd Project Y Y ? Y Y Y Y Y 

Greater than 70% of the twin sample had dyslexia 
Only midsagittal structures (lateral ventricles andlor corpus callosum) were measured 
Bivariate, or bivariate with post-hoc principle component analysis (= ) 
TWO timepoints 
white matter hyperintensities were the only neuroanatomic variable reported 
PCA used, but to assess global, rather than structure-specific, eigenvalues 
Handedness only 
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Figure 3.1 : Summary of heritability estimates for large neuroanatomic structures. Studies are 
listed in parenthesis if heritability is calculated via Falconer estimation. Pediatric studies are 
denoted with an asterisk. ICV-intracranial volume, Brain-total brain, LH-left hemisphere, RH- 
right hemisphere, GM-total gray matter, WM-total white matter. 

Variance components analyses estimates of neuroanatomic substructures are substantially 

less frequent than global volumetric measures. It is common that only one or two 

estimates of heritability have been reported for a given region of interest. For example, 

there are only two published twin studies that report findings for cerebral lobar tissue 

(Carmelli, Swan, DeCarli, & Reed, 2002b; Geschwind, Miller, DeCarli, & Carmelli, 

2002); both suggest that genes play the predominant role at this level of resolution. 

Similarly, there are only two extant studies to parse cerebellar variance into genetic and 

nongenetic components (Posthuma et al., 2000b; Wright, Sham, Murray, Weinberger, & 

Bullmore, 2002). Though large volumetric measures consistently show high heritabilities, 

the contribution of the genome to observed individual differences of smaller structures is 
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more variable. Of these, the lateral ventricles, corpus callosum, and the hippocampus are 

by far the most well-studied. There is extremely strong evidence that the variance in the 

area of the corpus callosum is dominated by genetic factors (Oppenheim, Skeny, Tramo, 

& Gazzaniga, 1989; Pfefferbaum et al., 2000; Scamvougeras, Kigar, Jones, Weinberger, 

& Witelson, 2003; Sullivan, Pfefferbaum, Swan, & Carmelli, 2001). In contrast, 

heritability estimates for both the hippocampus (Baare et al., 2001b; Narr et al., 2002; 

Rijsdijk et al., 2005; Sullivan et al., 2001; van Erp et al., 2004; Van Haren et al., 2004; 

Wright et al., 2002) and lateral ventricles (Baare et al., 2001a; Baare et al., 2001b; 

Pfefferbaum et al., 2000; Reveley, Reveley, Chitkara, & Clifford, 1984; Reveley, 

Reveley, Clifford, & Murray, 1982; Rijsdijk et al., 2005; Wright et al., 2002) are 

generally lower, but with a great deal of variability from study to study. 

Other neuroanatomic structures have been measured extremely rarely in full twin designs, 

if at all. A few studies on MZ pairs have shown high intertwin correlations for non 

cerebral structures. For example, White et all reports correlations of .84 for caudate, .75 

for putamen, and .75 for thalamic volumes in twelve MZ pairs (White, Andreasen, & 

Nopoulos, 2002). For most regions of interest, however, the information regarding 

variance components comes solely from a small study by Wright et al. on 10 MZ and 10 

DZ twin pairs, which included measures from individual cerebral gyri (roughly based on 

Broadmann's areas) as well as subcortical gray, thalamus, cerebellum, and brain stem: 92 

parcellated regions (all grey matter) in total (Wright et al., 2002). While numerous 

regions had statistically significant familial influences, due to low power only the 

precentral gyms had statistically significant effects due to genes specifically. Regions 
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with heritability estimates greater than .50 included the superior parietal lobe, posterior 

cingulate gyrus, corpus striatum, putamen, and cerebellum. Though this study suffers 

from low power and multiple testing issues, it is currently the defacto source for 

estimates of the magnitude of genetic influences in typical populations for nearly all 

substructures in the brain. 

With the exception of the lateral ventricles, there is little evidence that the shared 

environment plays a role in generating neuroanatomic (either morphological or 

volumetric) variability, although this may be obscured by non-additive effects of genes. 

High Resolution Image Analyses 

To date, there have been only two published twin studies that examine neuroanatomic 

structure at high resolution. In a landmark paper, Thompson et al. examined gray matter 

density in 10 MZ and 10 DZ adult twin pairs and found that genetic factors strongly 

influenced language and executive processing centers and had weak but significant 

associations with intelligence (Thompson, Cannon, & Toga, 2002). Probability maps 

suggested particularly strong genetic effects in middle fiontal regions, and an asymmetry 

in Wernicke's region with the left side highly significant but not the right (Figure 3.2A). 

More recently, Holshoff Pol et al. examined both gray and white matter density in a 

substantially larger sample of 258 individuals. Their analysis found several highly 

significant gray matter foci, including in the superior and middle fiontal lobe, Heschl's 

gyrus, cingulate cortex, and portions of the occipital lobe. Additionally they discovered 

significant white matter tracts including the superior occipitofrontal fascicle, corpus 
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callosurn, and corticospinal tracts (Figure 3.2B). Some significant genetic correlations 

between brain and behavior also were observed, including between the right medial 

frontal gyms and PIQ and VIQ, and PIQ with the right parahippocampal gyrus. 

Figure 3.2: Results from extant studies twin studies on voxel-level data. Panel A is a probability 
map from Thompson et al. demonstrating regions of significant heritability for gray matter density. 
Panel B displays findings from an analysis of white matter density by Hulshoff Pol et al. in a glass 
brain, with significantly heritable regions in orange and reference structures (ventricular system in 
blue, occipitofrontal fascicle in green). 

Morphometric measures 

The role of the genome on morphological differences appears to be significant, but more 

modest than its influence on volume. Though less well studied, twin findings on shape 

differences have been more consistent (Bartley, Jones, & Weinberger, 1997; Biondi et al., 

1998; Bonan et al., 1998; Eckert et al., 2002; Haidekker et al., 1998; Lohrnann, von 

Cramon, & Steinmetz, 1999; Mohr, Weisbrod, Schellinger, & Knauth, 2004; Steinmetz, 

Herzog, Huang, & Hacklander, 1994; White et al., 2002). In general, brain morphology 

appears to be significantly heritable, but to a lesser extent than volume. For example, 
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blinded raters are able to successfully match surface renderings of MZ pairs, even though 

there can be striking qualitative differences (Biondi et al., 1998), which suggests some 

familial influences but also a role of the unique environment in the development of gyral 

patterns. More quantitative measures have produced similar findings. A study by 

Bartley et al. found low heritability for gyral patterning despite high heritability estimates 

for volumes in 10 MZ and 9 DZ pairs (Bartley et al., 1997). Similarly, a study by White 

et al. on 24 MZ twin pairs reported that intertwin correlations on volumetric measures 

were substantially higher than surface measures of cerebral morphology (White et al., 

2002). Lohmann also found an effect of genes on sulcal patterns in 19 pairs of MZ twins, 

with stronger pairwise correlations for deeper (and ontogenetically older) sulci (Lohmann 

et al., 1999). Other groups have replicated these findings using different metrics of 

cortical shape and gyral complexity (Haidekker et al., 1998; Mohr et al., 2004). Similar 

conclusions are found when examining the central sulcus (Bonan et al., 1998; Le 

Goualher et al., 2000) and the planum temporale (Eckert et al., 2002) specifically rather 

than global sulcal patterns. 

Multivariate and Longitudinal Studies 

Despite the importance of understanding the etiology inter-regional neuroanatomic 

relationships, there are only three studies that investigate questions of this nature. BarrC et 

al. examined relationships between height, intracranial volume (ICV), total gray matter, 

total white matter, and lateral ventricular volumes in a large sample of 54 MZ and 58 DZ 

adult twin pairs and 34 sibs of DZ pairs, via variance component analyses (Baare et al., 

2001a). Between grey and white matter, they found a genetic correlation of .68, a unique 
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environmental correlation of .04, and no statistically significant evidence of genetic 

correlations between the lateral ventricles and other regions of interest. A principle 

components analyses by Pennington et al. on a sample of 34 MZ and 32 DZ late teen or 

young adult twin pairs parcellated the brain into 7 cortical gray compartments and 6 

noncortical structures (white matter, basal ganglia, brain stem, hippocampus, cerebellum, 

and the central gray nuclei including the thalamus) found that two factors could account 

for 64% of the total phenotypic variance. While cerebral structures loaded primarily on 

the first factor, all other structures loaded on the second (except central gray, which 

loaded equally on both). Both factors were significantly more correlated in MZ than in 

DZ pairs, suggesting a strong genetic component to each. The final extant multivariate 

volumetric study by Wright et al. parcellated the brain into regions with extremely high 

spatial resolution (Wright et al., 2002). This study identified two putative supra-regional 

principle components under genetic control. Specifically, a frontoparietal 

limbic/paralimbic factor and a factor related to audition (lateral temporal cortex, insula, 

occipitofrontal, and other frontal regions) were found; factor loadings, however, were 

quite low (< 10.250. These findings would suggest that genes are involved in generating 

hnctional relationships between distant brain regions. 

There is only one paper that reports longitudinal data on neuroanatomic structures and 

changes with age. It is based on two volumetric measurements with an interval of 4 years 

between them, using subjects recruited from the National Heart, Lung and Blood Institute 

(NHLBI) study on World War I1 veterans (Pfefferbaum, Sullivan, & Carmelli, 2004). 

The subsequent analyses on 7 1 twin pairs suggest genetic stability in both the corpus 



www.manaraa.com

callosum and lateral ventricular volumes over this time interval. In contrast, this study 

found evidence for environmental factors increasing the variability in both measures with 

time, suggesting ongoing changes in brain structure even in the eighth decade of life. 

This study, however, does little to explain the sources in neuroanatomic variation over 

the vast majority of the human lifespan. 

Relationships between Brain and Behavior 

Though numerous twin studies that have investigated the relationships between atypical 

behavior and neuroanatomic endophenotypes (Table 3.2), there are relatively few that 

have attempted to understand how the genetic and environmental effects on typical 

cognitive and behavioral measures are mediated through brain morphology. Most of the 

existing work has been on cognition. The detection of brain-cognition correlations has 

been particularly elusive in typical samples. An initial study on full scale IQ and several 

brain volumes in a small twin sample failed to find a significant correlation with any 

structure (range -.04 to .20) (Tramo et al., 1998). There is growing evidence that a small 

correlation does exist, however. For example, using voxel-based morphometry, 

Thompson found strong evidence that intelligence (defined as a combination of selected 

subtests of the WAIS-R) was significantly correlated with frontal gray matter in his 

sample of 40 twins, but did not attempt to parcellate the correlation into genetic and 

nongenetic components (Thompson et al., 2001). Spurred by this discovery, Posthuma et 

al. compared WAIS-IIIR IQ scores to total gray and white matter volumes in an extended 

twin design with 24 MZ pairs, 3 1 DZ pairs, and 25 siblings (Posthuma et al., 2002). They 
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Table 3.2: Comparison of qualitative study design characteristics for the studies on neuropathology. This summary 
table excludes case reports and studies using twin samples to study non-genetic questions. Studies that provide 
useful information on typical neurodeveloprnent, usually because they report statistics on control samples, are 
shown in boldface. 

Study 

Casanova, 1990a 

Casanova, l990b 

Suddath, 1990 

Casanova, 1991 

Weinberger 1991 

Weinberger, 1992a 

Weinberger, 1992b 

Bartley, 1993 

Kinnunen, 1993 

Goldberg, 1994 

Thorpe, 1994 

Hyde, 1995 

Noga, 1996 

Jackson, 1998 

McNeil, 2000 

Barre, 2001 

Briellmann, 2001 

Noga, 2001 

Bridle, 2002 

Cannon, 2002 

KiseppB, 2002 

Narr, 2002 

Narr, 2002b 

Castellanos, 2003 

JarvenpBa. 2004 

Kates, 2004 

May, 2004 

Van Erp, 2004 

Van Haren, 2004 

Hulshoff Pol, 2004 

Rijsdijk, 2005 

Spanie1,2005 

Styner, 2005 

Hulshoff Pol, 2006 

Condition of Interest 

Schizophrenia 

Schizophrenia 

Schizophrenia 

Schizophrenia 

Schizophrenia 

Schizophrenia 

Schizophrenia 

Schizophrenia 

Lupus 

Schizophrenia 

Multiple sclerosis 

Tourette syndrome 

Schizophrenia 

Epilepsy 

Schizophrenia 

Schizophrenia 

Epilepsy 

Bipolar l 

Schizophrenia 

Schizophrenia 

Bipolar l 

Schlzophrenla 

Schizophrenia 

ADHD 

Cognitive Dysfunction 

Autism 

PTSD 

Schizophrenia 

Schizophrenia 

Schizophrenia 

Schizophrenia 

Schizophrenia 

Schizophrenia 

Schizophrenia 

Pediatric 
Population? 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

Y 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

Y 

N 

Y 

N 

N 

N 

N 

N 

N 

N 

N 

Structure of interest7 

Corpus Callosum 

Corpus Callosum 

Ventricles, 
hippocampus 

Corpus Callosum 

Cerebral lateralization 

Hippocampus. PFC 

Limbic 

Sylvian fissure 

Clinical readings 

Prefrontal Cortex, 
Hippocampus 

Clinical readings 

Caudate 

Global 

Hippocampus 

Hippocampus 

Multiple 
substructures 

Clinical Findings. 
Hippocampus 

Mesial Temporal. 
Basal Ganglia 

Subcortical 

Voxel-level 

Global 

Corpus Callosum 

Hippocampus 

Caudate 

Hippocampus 

Global 

Septum Pellucidum 

Hlppocarnpus 

Hlppocampus 

Hippocampus 

Global T l n 2  
Relaxation 

Corpus Callosurn 

VoxeCLevel 

Volumetric 
Analysis? 

N 

N 

Y 

N 

Y 
Y 

Y 

Y 

N 

Y 

N 
Y 

Y 
Y 

Y 

Y 

Y 

Y 

Y 

N 

Y 

Y 

Y 

Y 

Y 

Y 

N 

Y 

Y 

Y 

Y 

N 

Y 

N 

Morphological 
Measures? 

N 

Y 

N 

Y 

N 

N 

N 

N 

N 

N 

N 

N 

Y 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

Y 

N 

Voxel-level 
Measures? 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

Y 

N 

N 

Y 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

Y 

Informs typical 
development? 

N 

N 

N 

N 

N 

N 

N 
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found a small but significant correlation between IQ and neuroanatomic structures, with 

all of the covariance between IQ and brain anatomy caused by genetic commonalities. A 

follow up study examining WAIS-I11 subtests produced similar results, with small brain- 

behavioral correlations dominated by genetic effects (Posthuma et al., 2003). It is 

noteworthy that since both IQ and neuroanatomy are strongly genetically mediated, 

despite the dominance of genes in generating covariance, the relative contributions of 

shared genes to either IQ or brain volume is rather small. The only brain and behavior 

study on a typical pediatric twin population was by Pennington (Pennington et al., 2000), 

which found WISC-R h l l  scale IQ measures to be correlated with total cerebral volume 

(.42 in their reading disabled sample, .3 1 in a control group). The genetic correlation 

between these measures in the combined sample was .48. 

The remaining studies on cognition are from the NCLBI, an all male geriatric population 

(Carmelli et al., 2002b; Carmelli, Reed, & DeCarli, 2002a; Carmelli et al., 1999). Of 

these, one presents a systematic analysis of two cognitive factors (verbal memory and 

executive hnction) (Carmelli et al., 2002b). These factors were based on principle 

components analyses of data from the Trails A and B, Stroop, California Verbal Learning 

Test, the Iowa Screening Battery for Mental Decline, and the WAIS Digit symbol 

substitution subtest, were highly heritable (.62 and .64, respectively). Executive hnction 

was found to be positively correlated with frontal and temporal regions and negatively 

with lateral ventricular volume (magnitude of correlations approximately .20). A similar, 

slightly weaker pattern was found with brain-verbal memory correlations. However, out 

of all measures, only lateral ventricular volumes and executive hnction shared common 
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genetic origins to a significant level (genetic correlation = -.25). Other studies from the 

NCLBI focus on the relationships between cognitive and physical performance and white 

matter hyperintensities in the elderly (Carmelli et al., 2002a; Carmelli et al., 1999). 

Limitations of current research 

Despite the promise of these methods, numerous limitations of the field are readily 

apparent. First is a relative dearth of work and lack of replication in this novel field, 

exacerbated by the limited sample sizes of the great majority of existing studies (Figure 

3.3). The information that can be gleaned from control groups from pathological studies 

suffers this problem to an even greater extent (Figure 3.4). Small samples lead to low 

confidence in parameter estimates, which is certainly responsible for much of the 

observed discrepancies between studies. Further, many studies restrict their samples to 

exclusively MZ twins, which prevents them from distinguishing genetic effects from 

those of the shared environment (Biondi et al., 1998; Mohr, Knauth, Weisbrod, Stippich, 

& Sartor, 2001; Mohr et al., 2004; Reed, Pfefferbaum, Sullivan, & Carmelli, 2002; 

Steinmetz, Herzog, Schlaug, Huang, & Jancke, 1995; Tramo et al., 1998). Of the papers 

on typical development that apply full twin designs, most are based either on a sample 

acquired by the Netherlands Twin Registry (NTR) on an adult sample, or on the geriatric 

sample from NHLBI. To date, there has been only one large twin imaging study on a 

pediatric sample(Pennington et al., 2000), in which the majority of individuals had been 

diagnosed with dyslexia. 
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The variety of image processing methodologies used and target regions of interest also is 

responsible for the lack of replication. In general, studies that employ state of the art 

image processing techniques rarely take advantage of advanced statistical genetic 

methodologies, and vice versa. The few studies that demonstrate well-designed 

methodological approaches in both domains (e.g. Wright et al.) are ubiquitously limited 

by extraordinarily small samples. Additionally, the lack of information regarding 

multivariate, longitudinal, and pediatric neurodevelopmental questions is striking. A 

better understanding of these processes in a typical population is critical to providing 

more a more definitive understanding of the genetic substrates of behavioral 

development. 
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Figure 3.3: Sample characteristics of the extant MRI twin studies on typical populations. To facilitate 
comparisons with singleton and sibling subsamples, individual twins are counted rather than twin pairs. 
Asterisks denote studies on pediatric populations. Several studies share overlapping samples, either 
derived from the National Heart, Lung, and Blood Institute sample (I), or from the Netherlands Twin 
Registry (2). For convenience, the sample from the present study, to date, is shown at right. 
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Figure 3.4: Sample characteristics of the extant MRI twin studies on neuropathology. Control subjects are 
shown in color. 
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"We thus comprehend, not only that the human mind is united to the body, but also the 
nature of the union between mind and body. However, no one will be able to grasp 
this adequately or distinctly, unless he first has adequate knowledge of the nature of 
our body. " 

--Baruch Spinoza, Ethics (Part 11, Prop. XIII), 1677 
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Psychology and Psychiatry. (2006) 
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ABSTRACT 

The importance of genetic factors in generating variability in neuroanatomic 

endophenotypes is largely unquantified, particularly for developmental samples. We 

measured several neuroanatomic volumes via high-resolution MRI in a sample of 90 MZ 

twin pairs, 37 DZ twin pairs, and 158 unrelated singletons between the ages of 5 and 18. 

Statistical genetic analyses demonstrated high heritability for nearly all structures 

measured, with the exception of the lateral ventricles and the cerebellum. Moreover, 

allowing for changing genetic effects with age, we observed significant gene by age 

interactions in the fiontal and temporal lobes, in both gray and white matter. These results 

suggest a strong and dynamic role of additive genetic differences on the population 

variability in pediatric brain structure. 
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Introduction 

Given the limited information on what drives individual differences in neurobiological 

endophenotypes, particularly in children, a relatively simple but important first step is to 

quantify how much genetic and nongenetic sources drive the large population variances 

observed for gross brain volumes. Since many specific brain functions are related to 

specific brain regions (Kandel & Jessl, 2000), an understanding of what drives 

differences in volume may help explain differences in brain function, i.e. behavior. The 

only prior study on a pediatric population (Pennington et al., 2000) reported high 

heritability for total cerebrum (.97), right neocortex (.68) and left neocortex (.80) in a 

sample of 34 MZ and 32 DZ twin pairs. Though a factor analysis of smaller substructures 

was performed in this study, variance components statistics for individual volumes were 

not reported. 

With the exception of prenatal life, childhood is the period with the most dramatic 

changes in gross neuroanatomic structure and size (Lenroot & Giedd, 2006). It is 

probably no coincidence that remarkable advances in cognitive function (including 

concrete reasoning, mathematics, language, metacognition, and greatly reduced 

processing speeds) also take place during this time, particularly in the school years 

(Berger & Thompson, 1995; Flavell, Miller, & Miller, 1993). Neuroimaging studies have 

consistently demonstrated large increases in cerebral white matter volumes, with cerebral 

gray matter volumes generally decreasing throughout late childhood (Reiss, Abrams, 

Singer, Ross, & Denckla, 1996). More recent longitudinal studies in large samples have 

enabled developmental trajectories to be determined with substantially more precision 
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(Giedd et al., 1999; Gogtay et al., 2004). In these studies, the general trends toward 

increasing white and decreasing gray matter volume in the second decade are confirmed, 

but gray appears to peak during this age range and slowly decline in subsequent years. 

Peak gray matter volume is both sex-dependent and varies based on neuroanatomic 

region, but the general trend is consistently an "inverted U" shape (Figure 4.1). In 

contrast, white matter monotonically increases over late childhood and into early 

adulthood. 

f 
npkrrr 

Figure 4.1 : Changes in lobar 
brain volumes with age in a large, 
longitudinal pediatric sample. 
Trajectories in blue represent 
boys, with girls in red. From 
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Giedd et al. Nature Neuroscience 

T C ~ ~ ~ Y ~ W  accrpw ww mruu (2000). 
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* W P I * I Y Y I  -- WZC*r(YIIUYUM. 

This first volumetric analysis presents the results of classic ACE models for several 

regions of the pediatric brain, including the four principal cerebral lobes as well as 

subcortical nuclei. With these models, general information on the strength of genetic and 
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nongenetic influences on brain variability for this age range are reported. This 

information represents the first study of its kind in a typically developing pediatric 

population. As late childhood is a particularly dynamic time with respect to brain 

volumes, in a second series of analyses we present findings from models in which both 

genetic and environmental influences on brain volumes are allowed to change linearly 

with age. 

Methods 

Subjects 

The analyses in this chapter were based on MRI data from one hundred twenty-seven 

pairs of typically developing same-sex twins (mean age = 11.6, SD = 3.3; age range = 

5.6-18.7; 74 male pairs [58%], 53 female pairs) and 158 unrelated typically developing 

singletons (mean age = 11.3, SD = 3.5; age range = 5.2-18.7; 94 males [59%], 64 

females). Of the 127 twin pairs, 90[71%] were MZ(mean age = 11.9,SD = 3.0; age range 

= 5.8-1 8.7; 52 male pairs [58%], 38 female pairs), and 37 pairs were DZ (mean age = 

10.9, SD = 3.7; age range = 5.6-18.2; 22 male pairs [59%], 15 female pairs). Though 

singletons provide no information on the relative magnitudes of individual variance 

components, they could potentially increase precision of total variance estimates, as well 

as for the role of covariates on mean volumes. 

Image Processing 

The native MRI scans were first registered into standardized stereotaxic space using a 

linear transformation (Collins, Neelin, Peters, & Evans, 1994) and corrected for non- 
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uniformity artifacts (Sled, Zijdenbos, & Evans, 1998). The registered and corrected 

volumes were segmented into gray matter, white matter, cerebro-spinal fluid, and 

background using a neural net classifier (Zijdenbos, Forghani, & Evans, 2002). The 

tissue classification information was combined with a probabilistic atlas to provide region 

of interest measures (Collins et al., 1994).The output measures of this process that have 

shown high agreement with conventional hand tracing measures, and were included in 

this analysis, are the midsagittal area of the corpus callosum, the gray and white matter 

volumes of the total cerebrum, frontal, temporal, and parietal lobes, the caudate nucleus, 

the cerebellum, and the lateral ventricles. Figure 4.2 summarizes the image processing 

pipeline graphically. 

la 
I wlNl Pipeline 

Neuroanatomic segmentation 
and parcellation 

- - 
Ttssue 

- 

Haw Data Image ragrnered 
m Tai~~rach space 

T e ~ p  ate 
l m g e  Deforrrat~or Fie 0 Neuroanatomtc Alias 

I Defined on Template 

Figure 4.2: Summary of the image processing pipeline for volumetric regions of interest 
developed by MNI 
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Statistical Analysis 

Neuroanatomic volumes were first assessed for normality, an important assumption of 

likelihood-based structural modeling. All volumes were highly normal, with the 

exception of lateral ventricles, which had a slight leftward skew. However, we opted 

to analyze the raw volumes for all variables including the ventricles, as the raw 

measurement units (cubic centimeters) are substantially more interpretable than 

transformed units. Cross twin correlations for each neuroanatomic region were 

subsequently performed. Additionally, we split both MZ and DZ groups into younger 

(Y) and older (0) subgroups based on the median age (1 1.36) in order to get a rough 

estimate of changes in heritability over time. 

Univariate ACE twin models were constructed in Mx (Neale, Boker, Xie, & Maes, 

2002). The effect of both age and gender on the mean was simultaneously estimated in 

addition to variance components. This procedure employed an automated script that 

included calculations for AE, CE, and 'E only' submodels, providing the optimizer 

unique starting values for all paths coefficients for each volume analyzed, based on 

descriptive statistics. 

With the addition of individual-specific moderator variables, the standard ACE model 

can be expanded to account for interactions between A, C, and E with an observed 

variable (Purcell, 2002). Rather than a simple linear relationship between latent 

variable and phenotype, an interaction component (in our case, with age) also is 

included; 
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9, =(a ,  *A+a2 *A*AGE,)+(c, * C + c 2  *C*AGE,)+(e, * E + e ,  *E*AGE,) 

for the ith individual. Therefore, the expected variance and covariances become: 

Variance = (a + x *  AGE^)^ + (c + y *  AGE^)^ + (e + z * AGES~ 

CovMz = (a + x *  AGE^)^ + (C + y *  AGE^)^ 

CovDz = '/Z (a+ x *  AGE^)^ + (C + y *  AGE^)^ 

where x, y, and z are additional free parameters. 

The best-fit model for each neuroanatomic region was determined using maximum 

likelihood (ML) (Edwards, 1972). Using the best-fit model for each neuroanatomic 

region, we calculated broad sense heritability estimates (proportion of the variance due 

to genetic effects) for each structure and corresponding likelihood-based 95% 

confidence intervals (Neale & Miller, 1997). Because the difference in ML between 

any model and a nested submodel follows a X2 distribution with degrees of freedom 

equal to the difference in the number of parameters between models, we were able to 

directly test several hypotheses, namely the statistical significance of genetic and 

shared environmental effects, gene x age interactions, and the importance of age and 

gender on mean volumes. As variance components parameter estimates were virtually 

identical between ACE and ACE-xyz (age moderated) models, below we report only 

findings from the latter. Though several tests were performed, given the correlated 

nature of the data and the modest sample sizes, we used an a of .05 as the threshold 

for statistical significance. 
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We also attempted to identify the most informative submodels by systematically 

removing parameters from the h l l  model. We employed Akaike's information criteria 

(AIC), mathematically X2- 2*df, which rewards model parsimony in addition to 

goodness of fit (Akaike, 1987). Thus, all things being equal, models with fewer 

parameters are favored as AIC is a mathematical representation of Occam's razor. 

This alternative approach also is advantageous since it allows non-nested models to be 

compared. 

Results 

Descriptive Statistics 

Cross twin correlations are shown in Table 4.1. Monozygotic correlations ranged from 

.68 to .92 and were, in general, nearly twice that of DZ correlations, which varied 

from .29 to .73. The difference in magnitude between MZ and DZ correlations 

suggests that most of the covariance between relatives is caused by genetic factors; the 

high absolute values for these correlations suggests that genetic factors also account 

for most of the total variance in these brain volumes. The most striking exceptions to 

the rule were the lateral ventricles and the cerebellum. The difference in magnitude 

between MZ and DZ correlations was substantially smaller for these structures. 
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Table 4.1 : Cross-twin volumetric correlations for MZ and DZ groups. Correlations for subgroups 
(0=01d, Y=Young) also are given. 

Structure MZ DZ MZY DZY MZO DZO 

When splitting the groups by age, MZ correlations tended to be higher in the older age 

group relative to the younger. In contrast, DZ correlations tended to drop in the older 

group. These effects were dramatic and are displayed graphically in Figure 4.3. It is 

important to keep in mind, however, that calculations from the DZ subgroup are based 

on quite small samples, and that treating age as a continuous variable is a preferable 

approach, particularly with small N. 

0.91 0.21 

0.86 0.22 

0.92 0.53 

0.84 0.43 

0.91 0.44 

0.90 0.37 

0.80 0.07 

0.91 0.45 

0.87 0.16 

0.86 0.23 

0.93 0.60 

0.92 0.34 

0.88 0.38 

0.76 0.20 

0.69 -0.14 

0.83 0.41 

Total Cerebrum 0.91 0.44 

Total Gray Matter 0.84 0.41 

Total White Matter 0.91 0.53 

Frontal Gray Matter 0.82 0.46 

Frontal White Matter 0.90 0.47 

Total Frontal Lobe 0.89 0.45 

Parietal Gray Matter 0.80 0.29 

Parietal White Matter 0.90 0.46 

Total Parietal Lobe 0.88 0.30 

Temporal Gray Matter 0.83 0.45 

Temporal White Matter 0.91 0.65 

Total Temporal Lobe 0.92 0.53 

Caudate Nucleus 0.83 0.39 

Corpus Callosum 0.84 0.32 

Lateral Ventricles 0.68 0.40 

Cerebellum 0.86 0.73 

0.89 0.58 

0.81 0.56 

0.82 0.43 

0.77 0.55 

0.79 0.31 

0.84 0.51 

0.80 0.45 

0.83 0.39 

0.86 0.45 

0.74 0.62 

0.80 0.62 

0.87 0.65 

0.72 0.42 

0.90 0.37 

0.65 0.66 

0.86 0.81 
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Figure 4.3: Graphical depiction of cross-trait correlations. MZ correlations are shown in red, and 
DZ correlations in green. For each structure, three pairs of MZIDZ correlations are shown 
(young group at left, old group at right, combined at center). 
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4 

Heritability Estimates 

Heritability estimates for neuroanatomic structures were generally high, with additive 

genetic variance ranging from .49 - -89 (Table 4.2). The principal exception was 
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E. The cerebral lobar volumes all had heritability estimates of about 30, with 

virtually none of the variance in volumes attributable to shared environmental effects. 

Although confidence intervals overlap widely, in general, cerebral white regions 

appeared to have higher a2 values when compared to their gray matter counterparts; 

consistent with this finding, a strong genetic influence on corpus callosum area was 

also observed. Additive genetic effects also were the predominant source of variance 
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in subcortical nuclei, with genetic factors accounting for about 70% of the variance in 

putamen and globus pallidus volumes, and about 80% of thalamus and caudate 

volumes. The only regions of interest that suggested any substantive role of shared 

environment on neuroanatomic variance were the putamen (c2 =. 17) and the 

cerebellum (c2 =.30) Direct hypothesis testing using submodels found that genetic 

contributions were statistically significant for all brain regions, including lateral 

ventricles ( x i  range 7.4 - 5 1.5, p-value range .0253 - <.0001). The role of shared 

environment was not found to be significant for any tissue ( x i  range 0.0 - 1.6, p-value 

range 1.0 - .45). 
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Table 4.2: Heritability estimates for all neuroanatomic structures, based on maximum likelihood 
optimization of the full ACE-,8, ,8, ,8, model. a2, c2, and eZ, represent the proportion of the 
variance in volume due to genetic, shared environmental, and unique environmental sources, 
respectively. Additionally, Chi-squared tests of the significance of genetic (A) and shared 
environmental (C) variance components were performed by comparing the fit of models with and 
without their corresponding parameters, and are provided on the right. Since the unique 
environment includes a contribution from measurement error, it can not be removed from the model. 
Heritability estimates of these full models (i.e. including interactions) were virtually identical to 
traditional ACE models (not shown). 

x,' P x22 P 
STRUCTURE a2 c2 e2 

Total Brain Volume 1 0.89 [.67 ,921 0.00 [.00 ,221 0.1 1 [.08.16] 51.5 <0.0001 0.0 1.0000 

Total Gray Matter 1 0.82 [.SO 871 0.00 [.00.31] 0.18 1.13 261 26.2 <0.0001 0.0 1.0000 

Total White Matter 1 0.85 [.56 .90] 0.01 [.00 ,281 0.15 [.I0 ,221 35.6 <0.0001 0.0 1.0000 

Total Frontal Lobe / 0.84 [.56 .89] 0.00 [.00 ,271 0.16 [.I1 .23] 34.2 <0.0001 0.0 1.0000 

Frontal Gray Matter 

Frontal White Matter 

0.77 [.36 ,831 0.00 [.00.38] 0.23 [.17.32] 16.5 0.0003 0.0 1.0000 

0.84 [.52 .89] 0.00 [.00 .31] 0.16 [.I1 .23] 34.3 <0.0001 0.0 1.0000 

I 

Temporal Gray Matter 1 0.80 [.45 ,861 0.00 [.00 341 0.20 [.I4 ,281 22.1 <0.0001 0.0 1.0000 

Parietal Gray Matter 

Parietal White Matter 

Total Parietal Lobe 

Occipital Gray Matter 

Occipital White Matter 

Total Occipital Lobe 

Temporal White I 

0.78 [.41 .86] 0.02 [.00 .37] 0.20 [.I4 ,291 20.2 <0.0001 0.0 0.9915 

0.85 [.63 .90] 0.00 [.00 ,221 0.15 [.I0 .22] 39.6 <0.0001 0.2 0.8900 

0.86 [.62 .90] 0.00 [.00 ,241 0.14 [.I0 .20] 39.9 <0.0001 0.0 1.0000 

0.69 [.I6 ,771 0.00 [.00 ,481 0.31 [.23 ,441 7.4 0.0253 0.0 1.0000 

0.66 [.24 .79] 0.04 [.00 .44] 0.30 [.21 .43] 9.9 0.0070 0.7 0.7047 

0.72 [.26 .81] 0.02 [.00 .45] 0.26 [.19.37] 11.2 0.0037 0.0 0.9965 

Matter 10.82 [.40.89] 0.02 [.00.44] 0.16 [. I1231 27.9 <0.0001 0.0 0.9965 

Total Temporal Lobe 

Total Cerebnrm 

Total Subcortical 1 

0.88 [.60 ,911 0.00 [.00 .271 0.12 [.09 ,171 44.3 <0.0001 0.0 1.0000 

0.88 [.65.91] 0.00 [.00.23] 0.12 [.09.17] 48.4 <0.0001 0.0 1.0000 

Caudate Nucleus 

Putamen 

Globus Pallidus 

Thalamus 

0.80 [.56.85] 0.00 [.OO .22] 0.20 [.15.29] 28.7 <0.0001 0.0 1.0000 

0.65 [.30.87] 0.17 [.00.52] 0.17 L.13.241 17.0 0.0002 0.6 0.7312 

0.67 [.24.82] 0.09 [.00.50] 0.24 [.18.34] 10.9 0.0043 0.1 0.9441 

0.82 [.48.87] 0.00 [.00.30] 0.18 [.13.25] 24.3 <0.0001 0.0 1.0000 

Lateral Ventricles 1 0.31 [.00 .67] 0.24 [.00 ,581 0.45 [.33 .60] 9.5 0.0088 6.5 0.0379 

Nuclei 

Total Cerebellum 1 0.49 [.I3 ,831 0.30 [.00.64] 0.21 [.I6 ,291 8.9 0.0118 1.6 0.4532 

0.82 [.50.87] 0.00 [.00.31] 0.18 [.13.26] 25.7 <O.OOOl 0.0 1.0000 

Brackets indicate 95% confidence intervals. 

Corpus Callosum 0.85 [.41.89] 0.00 [.00.43] 0.15 [.11.22] 26.9 <0.0001 0.0 1.0000 
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Regression Components 

Age and gender also had differential effects between neuroanatomic regions (Table 

4.3). Male sex predicted substantially larger brain volumes using linear regression. 

Sex was a significant predictor for all regions with the exception of lateral ventricles 

(X2=2.19, d f=  I ,  p =  .1392) and corpus callosum area ( X 2 =  1.61, d f=  1, p=.2049). 

Age effects were more variable, but followed the general trend of having a negative 

relationship with mean gray matter volume, a positive relationship with mean white 

matter volume, and a positive relationship with gray and white matter volumes 

combined (i.e., total lobar volumes). The effect of age on neuroanatomic volume was 

significant for cerebral white matter structures, total temporal lobe volume, and the 

cerebellum. 

Table 4.3: Linear effects of sex and age on mean brain volumes. Columns under the 
"REGRESSION" heading are parameter estimates from the full model. The column "SEX 
indicates changes in predicted brain volumes if the individual is male, while "AGE is the 
change in volume per year of age (for the age range of the data, roughly 5-18). The 
"REGRESSION SUBMODELS" heading provides test statistics comparing the full model to 
submodels that did not allow for changes in mean volumes with either sex or age. In this 
figure, an a of .05 was arbitrarily chosen as a threshold for significance. 

Total Cranial volume 
CEREBRUM 

Total Cerebral Volume 
Total Gray Matter 
Total White Matter 

Total Fmntal Lobe 

Fmntal White 
Total Parietal Lobe 

Pariatel White 
Total Occ~pital Lobe 

Temporal White 
Corpus Callosum 
SUBCORTICAL 
Total Subcottical Vol. 
Caudate Nucleus 0.76 0.3821 -1.24 
Globus Pallidus 9.12 O.WK 7.12 
Putamen 1.17 0.m -0.83 
Thalamus 15.93 0.89 0.07 NO 12.25 b(LiOw. 10.25 YEStrend 3.38 0.0860 1,33 
Lateral Ventricles 8.28 1.46 0.19 YES 2.19 0.1392 0.19 YES 1.82 0.1774 -0.18 
Cerebellum 114.44 12.35 0.77 NO 38.10 0.OOClJ 36.10 NO 8.27 0 . W  6.27 
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Table 4.4: Testing age invariance in neurodevelopment. For each structure, maximum likelihood estimates for the variance components of full ACE- Px P, Pz models 

are given. Chi-squared tests of age invariance (i.e. heteroscedasticity) were performed by removing all age interaction parameters (i.e. Px , f ly , and Pz ) 
simultaneously from the full model. Tests of gene'age and (unique) environment* age interactions were performed on models in which nonsignificant shared 
environment interaction parameters were removed. Examining best-fit submodels is an alternative approach to traditional hypothesis testing. Using AIC, the best fit 
submodels of the full model are shown (where X, Y, and Z denote Px , Py and Pz , respectively). 

1 Parameter estimates I Age invariance' Gene ' age Environment ' age I Best-Fit Submodels 
Structure 

Total Brain Volume 

Total Gray Matter 

Total White Matter 

Frontal Gray Matter 

Frontal White Matter 

Parietal Gray Matter 

Parietal White Matter 

Total Parietal Lobe 

Occipital Gray Matter 

Occipital White Matter 

Total Occipital Lobe 

Temporal Gray Matter 

Temporal White Matter 

Total Tem~oral Lobe 

Total Frontal Lobe 

E px pv PZ a c 

41.09 0.01 10.11 

24.44 8.20 18.32 

10.26 0.01 4.19 

6.74 1.61 8.75 

P 2 2 
I P I P 

6.9 0.0752 4.0 0.0447 1.14 0.2857 58.54 0.01 20.82 

14.59 0.19 11.29 

8.1 0.0446 2.2 0.1362 2.56 0.1 096 

6.2 0.1014 5.0 0.0248 0.07 0.7913 

8.5 0.0362 4.8 0.0286 1.02 0.3125 

0.5 0.9123 0.1 0.7773 0.25 0.6171 

2.6 0.4557 0.7 0.3994 0.54 0.4624 

0.6 0.9078 0.3 0.6171 0.12 0.7290 

14.6 0.0022 5.0 0.0251 3.91 0.0480 

8.5 0.0366 6.5 0.0110 4.11 0.0426 

11.0 0.0117 6.9 0.0086 1.59 0.2073 

Caudate Nucleus 

Putamen 

Globus Pallidus 

AIC 

AE-WAE-XZ -4.861-4.00 2.43 0.00 0.85 

1.27 0.01 1.41 

1.10 -0.98 -0.25 

0.59 0.01 0.44 

0.68 -0.23 -0.21 

Total Cerebrum 

AE-XZIAE-Z -3.981-3.76 

AE-X -5.70 

AE-XlAE-XZ -4.981-4.00 

AE -7.47 

AE -5.39 

AE -7.45 

AE-XZ -4.00 

AE-XZ -3.99 

AE-XlAE-XZ -4.411-4.00 

Thalamus 

Total Subcortical Nuclei 

1.24 -0.20 0.1 1 

1 45.84 0.01 16.75 1 2.20 0.00 0.81 1 8.6 0.0356 4.9 0.0273 1.41 0.2351 1 AE XlAE XZ -4.591-4.00 

Corpus Callosum 

Lateral Ventricles 

Total Cerebellum 

11.0 0.0119 1.9 0.1648 5.43 0.0198 

4.7 0.1927 4.7 0.0307 0.6 0.4386 

14.8 0.0020 4.2 0.0398 4.35 0.0370 

9.6 0.0223 9.4 0.0022 2.13 0.1444 

AE-X -5.83 

AE-WAE-X -3.371-3.09 

AE-WAE-X -3.891-3.00 

AE-XZIAE-XI -4.851-4.301-4.00 

AE-Z 

AE-X -5.71 

AE-ZIAE-XZ -4.071-4.00 

AE-X -5.39 

AE-XZ -4.00 

AE-WAE-X -4.001-3.87 

10.9 0.0124 8.4 0.0037 0.11 0.7401 

AE-ZIAE -4.771-4.44 

AE-XZ -1.94 

AElACE -4.891-4.49 

AE-X -5.89 
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Figure 4.4: Changes in the variance of frontal lobe gray (A) and white (B) matter with age. Plots 
show absolute and proportional variance attributable to genetic (solid), shared environmental 
(dashed) and unique environmental (dotted) factors. Histograms above the plots show the 
distribution of the sample across the age range. 

Interactions with Age 

Parameter estimates for the full age-moderated models are given in Table 4.4. In general, 

total variance increased for most structures, particularly those in the cerebrum. 

Heteroscedasticity was observed most prominently in the frontal and temporal lobes and 

the caudate nucleus. In contrast, the cerebellum appeared to have no statistically 
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significant change in variance over the second decade of life (xi = 1.5, p-value = .6800); 

the best fit model via AIC, correspondingly, had no interaction parameter for cerebellar 

volumes. 

Changes in variance in the cerebrum were largely driven by an increase in the magnitude 

of the genetic path with age, though variance due to the unique environment also tended 

to increase with age. In contrast, the role of the shared environment was insignificant, 

both in main effect and interaction with age. Figures 4.4 and 4.5 plot changes in variance 

components with age for frontal and temporal lobar compartments, the two cerebral 

regions with the most prominent age interactions. From these figures, it is readily 

apparent that raw variance attributable to additive genetic factors is increasing 

dramatically in children, regardless of tissue type. In contrast, it appears that raw unique 

environmental variance also increases with age for gray matter, but decreases slightly in 

white matter over this age range. The net effect is that it appears that proportional 

variance owed to genetic factors, i.e. the heritability, changes little in gray matter but 

increases somewhat in white matter. 



www.manaraa.com

Figure 4.5: Changes in the variance of temporal lobe gray (A) and white (0 )  matter with age. Plots 
show absolute and proportional variance attributable to genetic (solid), shared environmental 
(dashed) and unique environmental (dotted) factors. Histograms above the plots show the 
distribution of the sample across the age range. 

Discussion 

These analyses clearly demonstrate the strong role of genetic factors in observed 

individual differences in pediatric brain volumes. High heritability for global brain 

volumes (e.g. total cranial volume, total gray matter, and total white matter) is consistent 

with prior studies in adults, as well as data from a study on pediatric dyslexia from 
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Pennington et al.. While a genetic role in brain formation will come as no surprise, it is 

significant that nearly all of the population variance in human brain volume is caused by 

genetic variance. 

Additionally, we observed that maximum likelihood estimates for cerebral white matter 

were generally larger than that of cerebral gray; the only other twin study to segment the 

brain into gray and white matter compartments (Baare et al., 2001a) also reported that 

gray matter heritability (.82) was somewhat lower than white (.88) in a sample of 54 MZ 

and 58 DZ adult twin pairs. 

Twin studies employing lobar parcellation schemes also are uncommon. To date, only 

two (Carmelli et al., 2002b; Geschwind et al., 2002) have provided parameter estimates 

for heritability, both in adult samples (Figure 4.6). Both found that genetic factors 

account for about half of the variance in lobar volumes (with the possible exception of 

occipital lobe). These estimates were substantially lower than that of the present study, 

however. There are several possible reasons for the discrepancy. Perhaps the most likely 

is that our measures combine left and right hemispheres, while the other two studies do 

not. In general, larger structures tend to have higher heritability values, perhaps due to 

decreased measurement error. Other possible reasons for differences include differing 

image processing methods, or true effects of age. 
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Figure 4.6: Extant heritability estimates for lobar brain volumes. In the legend, the first letter 
indicates lobe (F=frontal, P=parietal, O=occipital,T=temporal) and the second indicates 
hemisphere (L=left, R=right, T=total). 

Our analyses also found some evidence for interactions between latent factors and age, 

particularly for frontal and temporal lobar compartments. To our knowledge, the present 

analyses are the first to address gene by age interaction for brain volumes. We observed 

increasing variance in these regions with age, driven primarily by genetic factors. 

Prominent increases in the genetic variance may be related to the late maturation of the 

frontal and temporal lobes relative to the rest of the cerebral cortex (Gogtay et al., 2004). 

During childhood, the age of highest synaptic proliferation varies widely throughout the 

cerebrum. The synaptic density of the occipital cortex reaches peak density before four 

months of age, but peak synaptic density in the frontal lobe occurs at approximately four 

years of life and does not decline appreciably until near the end of the second decade 



www.manaraa.com

(Huttenlocher, 1979; Huttenlocher & Dabholkar, 1997). This heterogeneity is in contrast 

to nonhuman primates, in which peak synaptogenesis occurs shortly after birth 

throughout the cortex (Rakic, Bourgeois, Eckenhoff, Zecevic, & Goldmanrakic, 1986). 

Other measures of developmental changes in neuropil, such as dendritic arborization, also 

show postnatal changes and regional heterogeneity (Becker, Armstrong, Chan, & Wood, 

1984; Mrzljak, Uylings, Kostovic, & Vaneden, 1992). Genetic variability that produces 

individual differences in the proteins involved in the synaptic pruning and neural 

plasticity seen in childhood would be expected to produce increased variability in gray 

matter volumes, as gray matter is dependent on these factors. 

Similar patterns were seen in white matter, though the magnitude of the genetic effect 

was somewhat larger. Significant gene by age interactions were detected in the frontal, 

temporal, and parietal lobes. The process of white matter maturation is dominated by 

axonal myelination and continues through childhood into the third decade of life (Benes, 

Turtle, Khan, & Farol, 1994). Diffusion tensor imaging (DTI) studies have demonstrated 

developmental changes in white matter in this age range in vivo, with prefrontal cortex, 

the sensory-motor strip, superior temporal gyrus, precuneus, and several occipital 

subregions showing increased fractional anisotropy throughout the second decade 

(Bamea-Goraly et al., 2005). Additionally, measures of white matter density in children 

have shown age-related increases in fi-onto-temporal (i.e. language association) and 

corticospinal (i.e. voluntary motor) tracts (Paus et al., 1999). Thus, it is likely that gene 
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by age interactions with white matter volumes involve variations in the process of 

myelination during late childhood and adolescence. 

Interaction models such as these are not without limitation, and it is important to 

carefilly evaluate assumptions before placing too much weight on their results. One 

potential confound is that it is assumed that the moderator variable is not influenced by 

the phenotype of interest. For some G x E interaction studies, determining the causal 

relationships between moderator and phenotype is difficult, if not impossible. 

Fortunately, in the case of age as a moderator, the causal arrow, if it exists, certainly 

points fiom age to brain volume and not vice versa. 

A more important concern for the present study is the effect of scaling. For example, 

increases in mean volumes with age would, all things equal, generate increasing variance 

in volumes in older subjects. A change of scale, to log-transformed volumes, for 

example, could potentially eliminate the observed statistical interactions. This criticism of 

interaction is somewhat of a red-herring, however, as all statistical interactions could 

theoretically be eliminated by rescaling data. The observation that variance is increasing 

even in structures that have decreasing means with age (such as all cerebral gray matter 

measures) suggests against scaling as the sole cause of heteroscedasticity in the present 

study. Unlike many other variables in psychiatric genetics, neuroanatomic variables are 

not scaled arbitrarily or to generate favorable statistical properties; rather, volumes are 

the "true" measures of interest. Transformation of the data could serve to complicate 

interpretation, even assuming that the interaction is subsequently eliminated. Finally, it is 
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unlikely that scale could generate the observed differential interaction between different 

variance components. If scaling artifact was the sole source of heteroscedasticity, then 

variance components would be expected to change in parallel with one another. 

In summary, these analyses establish heritability values for brain volumes in typical 

children. They also provide some evidences of a dynamic, generically mediated process 

underlying changes in variance over time. 
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HERITABILITY AT HIGH RESOLUTION: STUDIES OF CORTICAL 
THICKNESS AT THE VOXEL LEVEL 

"God, or nature, or whatever else you wish to call the mysterious creative force of this 
world, which in the course of millions ofyears on the scale ofphylogenetic development 
has shaped out of the simple cell all the diverse and complex varieties oj'lqe, has, of all 
living beings, endowed only the human species with the capacity to create new things. 
Creation has impressed a part of its own creative craft upon the brain of humans. " 

-- Constantin Baron von Economo, Antwort zur Festrede des Prasidenten des 
Aeroklubs Alexander Cassinone, 1927 

Adapted From: 

LENROOT RK, SCHMIIT JE, ORDAZ SE, WALLACE G, NEALE MC, LERCH JP, KENDLER KS, EVANS AC, 
GEDD m. QUANTITATIVE GENETIC ANALYSIS OF CORTICAL THICKNESS IN A PEDIATRIC TWIN POPULATION. 
HUMAN BRAIN ~ ~ / ~ ~ P P I N G .  U N D E R  REVISION. 
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ABSTRACT 

Using data from a large sample (N=600) of twins and family members, we combined 

voxel-level neuroimaging and statistical genetic analyses to produce the first high- 

resolution pediatric heritability maps of the human brain. The role of additive genetic 

factors on variance in cortical thickness varied substantially over the brain surface. 

Heritability was strongest in the frontal lobe (particularly on the right side and 

orbitofi-ontal regions bilaterally), superior parietal lobule, language centers (Broca's and 

Wernicke's area), inferior pre- and postcentral gyrus, and superior temporal gyms 

bilaterally. In contrast, heritability was quite low in the occipital lobe and the inferior 

tempro-occipital cortex. The role of shared environmental factors on variance was 

insubstantial. These findings demonstrate regional effects of genes on cortical 

development, and could aid the hunt for genetic polyrnorphisms that affect variability in 

human brain structure. 
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Introduction 

Nearly all prior research on neuroanatomic endophenotypes is on volumes. These 

analyses, including those reported in the previous chapter, have consistently 

demonstrated that brain volumes are highly heritable throughout the brain. But though 

region of interest (ROI) based parcellation of the brain has numerous advantages, it also 

carries with it several limitations. In particular, ROIs have low resolution relative to the 

native resolution of the raw SPGR images (about 1 mm3). Thus, fine scale effects can be 

blurred or obscured when considering voxels in aggregate. Additionally, parcellation 

schemes are necessarily based on a priori knowledge of structural and functional 

neuroanatomy. Although using knowledge gleaned fi-om prior research is desirable in a 

hypothetico-deductive model, this approach has the capacity to overlook unanticipated 

gene-brain relationships. Given the lack of information in this area, it seems likely that 

many localized effects of genes on brain structure go undetected when using ROIs-alone 

(Ashburner & Friston, 2000). 

A complementary approach to ROIs is the use of high-resolution image analysis (HIA). 

The most commonly-used version of this technique is voxel-based morphometry (VBM), 

originally developed by Ashburner and Friston (Ashburner et al., 1998; Ashburner et al., 

2000). In this approach, raw MRI images are spatially normalized, and then a 

characteristic of interest (e.g. gray matter density) generated for all voxels in the image. 

At each voxel, standard statistical tests can be used. HIA has the advantage both of 

increased resolution and decreased reliance on gross neuroanatomic divisions. But these 
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new capabilities do not come without a cost; new problems, such as reduced power and 

multiple testing must be addressed. 

Ln this chapter, we combine HIA and statistical genetics to produce the first heritability 

maps of the pediatric brain. We employ novel methods developed for the measurement of 

cortical thickness. The measurement of cortical thickness, which has long been of interest 

to neuroscientists, has traditionally been difficult to measure using MRI. Advances in 

image processing, however, have allowed for measurements that are in high agreement 

with measures from more traditional histological methods (Lerch & Evans, 2005a). Prior 

studies on cortical thickness using MRI are sparse, but have shown significant changes in 

neural architecture in diseases such as Alzheimer's disease, autism, attention deficit 

hyperactivity disorder, and schizophrenia (Greenstein et al., 2006; Hardan, Muddasani, 

Vemulapalli, Keshavan, & Minshew, 2006; Lerch et al., 2004; Lerch et al., 2005b; Narr 

et al., 2005b; Narr et al., 2005a; Shaw et al., 2006b; Singh et al., 2006) as well as normal 

changes with age (Shaw et al., 2006a; Thompson et al., 2005). The cerebral cortex is of 

particular interest to genetic studies given its novel structure in mammals relative to other 

vertebrates and its massive and disproportionate increase in humans relative to other 

primates (e.g. Appendix A). 
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Methods 

Subjects 

Six hundred normally developing children (mean age 1 1.1 years, range 5- 18), including 

214 same sex monozygotic and 94 dizygotic twins, 64 siblings of twins, and 228 

singletons fiom non-twin families were included in these analyses (Table 5.1). Of the 

non-twin families, there were 34 sibships with two members, 9 with three members, 4 

with four members, and one family with five members. 

Table 5.1: Demographic data and global mean cortical thickness for each group. 

MZ DZ Sibs of twins Singletons Total 

N 214 (35.7%) 94 (15.7%) 64 (10.7%) 228 (38.0%) 600 

Mean Aae 11.03 (3.16) 11.20 (3.80) 11.62 (3.53) 10.92 (3.48) 1 1.08 (3.43) 

(SD) Ran5.37-18.72 Ran:5.55-19.34 Ran:4.99-19.11 Ran5.16-18.88 Ran:4.99-19.34 

Race 202 W (94%) 92 W (98%) 63 W (98%) 172 W (75%) 529 W (88%) 

W=Caucasian 6 B (3%) 0 B 0 B 36 B (16%) 42 B (7%) 

B=African 2 A  ( 4 % )  O A  OA 8 A (4%) 10 A (2%) 

A=Asian 4 H  (2%) 2 H  (2%) 1 H  (2%) 11H (5%) 18H (3%) 

H=Hispanic 0 U 0 U 0 U 1 U  ( 4 % )  1 U  ( 4 % )  

U=Other 

Handedness 189 R (88%) 78 R (83%) 56 R (88%) 199 R (87%) 513 R (86%) 

R=Right 19M (9%) 11M (12%) 7 M  (11%) 21M (9%) 36M (6%) 

M=Mixed 18 L (8%) 9 L (10%) 10 L (16%) 32 L (14%) 37 L (6%) 

L=Left 6 NA (3%) 2 NA (2%) 4 NA (6%) 2 NA ( ~ 1 % )  14 NA (2%) 

SES 43.49 (1 8.40) 42.92 (1 3.87) 40.1 1 (16.89) 40.70 (20.57) 41.99 (1 8.49) 

Ran: 20-89 Ran: 20-70 Ran: 20-77 Ran: 20-95 Ran: 20-95 

Mean CT 4.20 (0.34) 4.13 (0.32) 4.12 (0.37) 4.12 (0.38) 

(SD) 4.20 (0.34) M 4.14 (0.32) M 4.1 1 (0.48) M 4.15 (0.37) M 

4.19 (0.34) F 4.14 (0.32) F 4.14 (0.23) F 4.08 (0.39) F 
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Image Analysis 

The native MRI scans were registered into standardized stereotaxic space using a linear 

transformation (Collins et al., 1994) and corrected for non-uniformity artifacts (Sled et 

al., 1998). The registered and corrected volumes were segmented into white matter, gray 

matter, cerebro-spinal fluid and background using a neural net classifier (Zijdenbos et al., 

2002). The white and gray matter surfaces are then fitted using deformable models 

resulting in two surfaces with 81920 polygons each (MacDonald, Kabani, Avis, & Evans, 

2000). The white and grey matter surfaces are resampled into native space and cortical 

thickness was then computed in native space. In order to improve the ability to detect 

population changes, each subject's cortical thickness map was blurred using a 30mrn 

surface based blurring kernel, which respects anatomical boundaries. A kernel size of 

30rnrn was chosen to maximize statistical power while minimizing false positives (Lerch 

et al., 2005a). The output is cortical thickness at each of 40,962 cortical points, with 

information fi-om each individual stored as a single vector (Figure 5.1). Statistical results 

at each point are projected upon the smoothed brain template using in-house software 

developed by the Montreal Neurological Institute. A probabilistic atlas was used to assign 

cortical points to specific neuroanatomic regions (Collins, Zijdenbos, Barre, & Evans, 

1999). 
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Figure 5.1 : Vector to manifold relationship for cortical thickness data. The color look up table on 
the left represents a 40962 element vector, with colors corresponding to neuroanatomic locations 
at right. 

Statistical Analysis 

The resultant neuroanatomic output consisted of two matrices; one an N x I matrix of I 

cortical points for N subjects, and the second and N x V matrix of demographic 

information (age, sex, zygosity, etc.). We used the statistical package R to generate 

separate datasets for each cortical point, which iteratively passed to Mx for analysis. For 

the ith cortical point, the interfacing algorithm extracted cortical thickness information for 

all subjects and then linked them to demographic information. This new dataset was then 

reorganized such that each record represented data from families rather than that of 

individuals, and the dataset was then written to a text file (Figure 5.2). From within R, 

Mx was called to perform statistical genetic analysis, and append the results to an output 

file. This procedure was then repeated for all cortical points in the dataset. 
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I 

I Win- 1 Sibling! 

Famid Twinzyg Twin 1-CT Twin2-CT SiBCT 
I010 0 4.1 402 3.9789 14.0132 
0915 1 39982 4.1264 p.4587 
7827 0 4.1232 3.- 4.3972 

Figure 5.2: Conversion of spatially-referenced voxel information into the familywise data vectors 
typically used for genetic analyses in Mx. Information at a single spatial point in the image is 
associated with demographic information from the individual, and then each individual's data is 
systematically associated with that from family members. Mx models can then be used to analyze 
the information at this point in space. After sequentially iterating over all vertices, the output 
vector(s) have parallel structure to the original data 

The dualistic nature of the interface has several useful properties. First, it simultaneously 

takes advantage of the strengths of each program, i.e. the powerful dataset manipulation 

and graphical tools in R and the statistical modeling utility of Mx. Second, it modularizes 

the analyses. This allows for relatively easy modification of either the data structure or 

the statistical models with a minimum impact on the other component. Thus, simple 
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expansions to univariate analyses can be added to Mx scripts without affecting the R 

code. Conversely, adjustments to the R code can be used to determine a subrange of 

voxels to be studied, create novel neuroanatomic CT measures by averaging over regions, 

or substitute one non-anatomic measure for another (e.g. substituting full scale IQ with 

performance IQ in a bivariate analysis) without requiring modification of Mx scripts. The 

value of such straightforward modification will become increasingly apparent below and 

in subsequent chapters that use data on cortical thickness. 

For these analysis, we analyzed the data using classical ACE models, with the exception 

that an extended twin design was used (Posthuma et al., 2000b; Posthuma & Boomsma, 

2000a). The addition of siblings of twins and a large sample of siblings from singleton 

families (i.e. families with no twins) provided substantially increased power to detect 

genetic signal due to a greater number of observed covariance statistics (Figure 5.3). This 

extended design assumes that the shared environment operates similarly in both twins and 

singleton births, with respect to the phenotype of interest. Ln our sample, families 

contained a twin pair and up to three additional siblings, or singleton families with up to 

five members in total. 
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Figure 5.3: Power as a 
function of heritability in a 
series of simulations. 
Simulations used sample 
size and family structure 
identical to that of the 
actual data. Each data 
point represents the 
proportion of true positives 
(i.e. the power) from 1000 
simulations of N=600. 

0.4 0.5 

heritability 

These models also contained parameters to account for the effects of age and sex on 

mean cortical thickness, which were estimated concurrently with the variance 

components. Sex effects were estimated using a linear model and age was estimated 

using a cubic model based on prior evidence of age interactions with cortical thickness 

(Lenroot, 2005). Optimum model fit was determined using maximum likelihood 

(Edwards, 1972), which produces unbiased parameter estimates and allows for the 

identification o f  statistically significant parameters in the model. Likelihood based 95% 

confidence intervals also were calculated at each point (Neale et al., 1997). Fit statistics 

for submodels removing the parameters for genetic, shared environmental, or familial 
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(genetic plus shared environment) also were calculated, and parameter estimates from the 

full model, as well as x2 and AIC statistics of submodels, were appended to an output file 

as a single record. 

The resultant output consisted of parameter estimates for all cortical points as well as p- 

values of the statistical significance of A, and C. Brain maps were reconstructed from 

these data to visualize the maximum likelihood estimates of proportion of variability 

owed to additive genetic (a2), shared environmental (c2) and unique environmental (e2) 

factors. Probability maps also were constructed to assess the sigmficance of genetic 

factors on individual differences in cortical thickness. An a < .05 was set as the threshold 

for statistical significance. 

A false discovery rate (FDR) adjustment was applied to control for type I error 

(Genovese, Lazar, & Nichols, 2002); unless otherwise specified, FDR was set to allow 

for a 5% chance of false positives. Power analyses were generated using simulations as 

no other comparable studies are currently available. First simulated datasets identical in 

sample size and family structure of the true data were generated under various values of 

heritability. For each heritability value, one-thousand simulated datasets were created, 

and the models described above were subsequently fitted in order to generate a 

distribution of X 2  test statistics comparing model fit with and without the presence of a 

genetic factor. From this distribution, power at our a could subsequently be calculated. 
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WeWial #mM hdex 
Figure 5.4: Example of raw output from statistical genetic pipeline. Green points display heritability for 
all 40962 cortical points, while red values represent variance due to the shared environment, reflected 
into negative space. Cortical points with similar index numbers tend to be spatially proximal. 

Results 

Preliminary inspection of the raw output showed substantial heterogeneity in the 

heritability of cortical thickness, with heritability ranging from 0 to about .60 (Figure 

5.4). The patterns of heritability are readily apparent when parameter estimates are 

projected on the brain surface (Figure 5.5). Heritability was highest in inferior pre- and 

post-central gyrus, orbitofrontal gyri, superior frontal gyrus, lateral frontal gyrus, 

particularly on the right side, superior parietal lobe, and language centers including 
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Figure 5.5: Brain heritability map for cortical thickness, as derived from ACE twin models using an 
extended twin design on MRI data from 600 twins, siblings, and unrelated singletons. Regions in 
white represent vertices with no heritability. 

Broca's area, Wernicke's area, superior temporal gyrus, and the temporal pole. In 

contrast, shared environmental variance maximum likelihood estimates for nearly all 

vertices were zero, and approached zero for the remaining vertices (Figure 5.6). Variance 

caused by the unique environment and measurement error accounted for the greatest 

variance in most regions. 
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Figure 5.6: 
Maximum 
likelihood 
Parameter 
estimates for ACE 
models of cortical 
thickness 

In addition to maximum likelihood estimates, 95 % confidence intervals also were 

calculated (Figure 5.7). Intervals were broad, as expected given the relatively small 

sample size and fine scale of this study. With the exception of a few vertices in the 

inferior occipital lobe, the lower bound for shared environmental variance was zero. In 

contrast, the lower bound for heritability was above zero in the regions described above. 
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Figure 5.7: Likelihood-Based 95% Confidence Intervals for estimated variance 
components 

Probability maps testing the importance of the genetic factors also generated similar 

patterns as the point estimates and confidence intervals (Figure 5.8). A very stringent 

FDR = .05 had relatively few significant vertices, but these were found at the core of 

regions with previously demonstrated high heritability. As the FDR threshold was 

increased to .10 or .15, the significant vertices at higher FDRs tended to form core 

regions which were surrounded by less significant regions. This produced a "bulleseye" 

pattern rather than random noise throughout the cortex. 
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Figure 5.8: Probability map giving regions of statistically significant heritability. Colors represent 
significance at three false discovery rates (FDRs). Red represents an FDR of .05, green at . lo ,  and 
blue at . I5  (corresponding to uncorrected p-values of .002, .016, and .042, respectively. 

Discussion 

Ln his seminal text The Cytoarchitectonics OfThe Human Cortex, Austrian psychiatrist 

Constantin Baron von Economo presented his now classic maps on the variability in 

cortical gray matter thickness throughout the cerebral hemispheres (von Economo & 

Koslunas, 1925). In this chapter, we continue in this tradition by creating the first maps 

of the heritability of cortical thickness. Like von Economo's work, these analyses reveal 

distinct patterns of regional specificity. The most heritable regions include several 
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portions of the frontal cortex, parietal association areas, language centers, and anterior 

temporal cortex. 

It is noteworthy that many of the regions with the highest heritability estimates have well- 

documented roles in cognition, speech, sociality, and language; functions thought to have 

developed or been enhanced in humans relatively recently in evolutionary time (Fisher & 

Marcus, 2006). Comparative anatomic studies have demonstrated that many of the most 

prominent anatomic differences between humans and nonhuman primates lie within these 

regions as well, including the gyri encompassing Brodman's areas 9, 10, l l  (prefrontal 

and orbitofiontal cortices), areas 44,45 (Broca's area), and areas 21,22,37,39, and 40 

(superior temporal and supramarginal cortex) (Carroll, 2003). Though studies in animal 

models demonstrate that genes are critical for patterning of the brain as a whole (Grove & 

Fukuchi-Shimogori, 2003; Monuki & Walsh, 2001), the present findings show that 

genetically-mediated variance is topologically variable, at least with respect to cortical 

thickness. 

An ongoing evolutionary process could potentially explain why high genetic variability 

persists in relatively novel cortical regions, but not in others, as genes influencing 

evolutionarily "older" regions have had more time to reach allelic fixation. An 

alternative, albeit related, explanation would be that regions with low genetic variance 

have greater functional constraints on their determinants of cortical thickness, such that 

functional mutations in these regions have a higher probability of resulting in purifying 

selection. Comparative genomic experiments have shown that a subset of neurally- 
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expressed genes have evolved more rapidly in humans than in other primates (Dorus et 

al., 2004; Khaitovich et al., 2005; The Chimpanzee Sequencing and Analysis 

Consortium, 2005); both gene expression changes and protein sequence modification 

have accelerated in humans relative to nonhuman primates (Caceres et al., 2003; Enard et 

al., 2002; Gu & Gu, 2003; Hsieh, Chu, Wolfinger, & Gibson, 2003; Uddin et al., 2004). 

The findings of increased genetic variance in evolutionarily recent structures may 

represent a remnant of these rapid neurogenetic changes that accompanied our divergence 

fiom other primates. 

In the last years of his short life, von Economo's interests turned from cataloging the 

architecture of the cortex towards fhdamental questions on human origins (Triarhou, 

2006). His final works on comparative neuroanatomy are dedicated to describing the 

brain regions that are most unique to humans relative to other animals; Broca's area, 

frontal lobe, and the superior parietal lobe. His hypothesis of 'progressive cerebration' 

included within it the belief that human brain evolution did not end before dawn of 

civilization, but was an ongoing process even in the modem era. The presence of specific 

patterns of genetic variation in the cortex may be evidence that this belief was not too far 

off the mark. 
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"Children are very active, constructive thinkers and learners. They are clearly not blank 
slates that passively and unselectively copy whatever the environment presents to them." 

--John H. Flavell "Cognitive development: Past, present, and future." 
Developmental Psychology (28:6), 1992. 

LENROOT RK, SCHMITT JE, ORDAZ SE, WALLACE G, NEALE MC, LERCH JP, KENDLER K S ,  EVANS AC, 
GIEDD m. QUANTITAT~VE GENETIC ANALYSIS OF CORTICAL THICKNESS IN A PEDIATRIC TWM POPULATION. 
HUMAN BRAINJWIPPING. UNDER REVISION. 
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ABSTRACT 

In this chapter, we have expanded our analyses of cortical thickness to allow for changes 

with age. Both genetic and environmental variance decreased in most regions, though 

genetic variance increased in the superior parietal lobule and environmental variance 

increased in superior primary motor and somatosensory cortex. As total phenotypic 

variance decreased, the relative importance of genetic factors increased in most regions, 

including superior temporal, frontal lobes, and the superior parietal lobule. The increase 

in heritability in these regions is temporally coincident with the development of many 

cognitive functions that have been associated with them. Though underpowered, these 

results are suggestive of a dynamic process underlying both genetic and nongenetic 

contributions to cortical variability. 
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Introduction 

Although the human brain reaches 80 percent of its adult weight by the fifth year of life 

(Dekaban & Sadowsky, 1978), mid and late childhood represents a dynamic period in 

which several critical modifications to brain structure occur. In addition to the gross 

volumetric changes described in Chapter 4, related qualitative changes are observed. 

These include increasing myelination of CNS axons and rapid arborization of dendritic 

trees (Lenroot et al., 2006). During childhood, specific patterns of global gray density 

reduction are observed, with primary motor and sensory regions first to develop, followed 

by regions responsible for speech, language and parietal attention centers, and finally 

predominantly frontal lobe regions involved in motor coordination and executive function 

(Gogtay et al., 2004). 

The introduction of methods for estimating cortical thickness from MRI data have 

allowed for new assessments of developmental changes of the cerebral surface. For 

example, Sowell et al. found substantial decreases in mean cortical thickness in right 

dorsolateral prefxontal cortex, inferior temporal cortex, and occipitoparietal regions in a 

sample of 45 children ages 5-1 1, scanned twice at approximately 2 year intervals (Figure 

6.1) (Sowell et al., 2004a). Increases in mean cortical thickness were observed in the 

regions surrounding the Sylvian fissure and left anterior cingulate cortex and anterior- 

medial superior frontal gyrus. 
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Figure 6.1. Yearly changes in mean cortical thickness in a sample of 45 children ages 5-1 1. From 
Sowell et al. (Sowell et al., 2004a). 

These studies provide striking depictions of the dynamic changes in brain structure that 

occur in childhood at high resolution (Gogtay et al., 2004; Sowell et al., 2004a; Sowell et 

al., 2004b). In this chapter, we attempt to determine how variability in cortical thickness 

changes with age, and whether the strength of genetic and nongenetic factors on the 

phenotypes might affect this variability. 

Methods 

The methods for these analyses are similar to those described in the previous chapter. The 

subjects (n=600), image processing, and the automated generation of datasets for each 

vertex are identical. The analyses differ in that an alternative genetic model was used. 

The model was an extended twin design version of the age-moderator model described in 

Chapter 4, which allowed for changes in the influence of genetic and nongenetic latent 

factors on cortical thickness with time (Posthuma et al., 2000b; Posthuma et al., 2000a; 
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Purcell, 2002). Because univariate ACE models indicated that there was little variance 

due to the shared environment, we used AE models rather than the full ACE in order to 

increase statistical power. Thus, four parameters modeling the relationships between 

latent variables and cortical thickness: the main genetic and unique environmental effects 

(A and E) as well as parameters allowing age to moderate these variance components (X 

and Z) analogous to beta weights. As with the models described in the previous chapter, 

the effect of age and sex on mean cortical thickness was estimated simultaneously. 

Figure 6.2: Example of predicted changes in variance components with age (x axis) by vertex (y 
axis) from the raw output. Color maps depict predicted changes in variance with age for each 
vertex, with red and white colors indicating high variance, green low variance, and black 
intermediate variance. 

II-- Y-rraWYCl lllllMl 

Raw Genetic Variance Raw Environmental Variance Heritability 

Results 

In general, total variance in cortical thickness decreased with age throughout the 

cerebrum. Interpretation of the raw predictions of variance changes with age is difficult 

(Figure 6.2), but does demonstrate heterogeneity in the data. When projected on the brain 

surface, regionalized differences in both genetic and environmental variance with age are 

more apparent (Figure 6.3). Though as a rule both genetic and environmental variance 

decreased globally, there were some interesting exceptions. For example, increases in 
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genetic variance were observed in the superior parietal lobule, and environmental 

increases were seen in pre- and postcentral gyri. 

Figure 6.3: Changes in raw genetic (A) and environmental (E) variance predicted by maximum 
likelihood parameter estimates. Arrows point to example regions where increasing variance is 
observed. 

When considering more traditional metrics of genetic variance, namely heritability, 

dramatic changes were seen with age (Figure 6.4). The most striking increases were seen 

in the inferior frontal gyri, particularly on the left side, superior parietal lobule, and left 

supramarginal gyrus, with decreases in primary somatosensory and motor cortex, parieto- 

occipital cortex, and the inferior surface of the temporal lobe. As heritability is dependent 

on total variance, it important to keep in mind that observed increases in heritability are 
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largely driven by genetic variance decreasing at a slower rate when compared to 

decreasing environmental variance, rather than outright increases in genetic variance. 

Figure 6.4: Predicted heritability at 5, 12, and 18 years of age based on maximum likelihood 
estimates from models that allow for age to moderate genetic and environmental influences on 
cortical thickness. The larger images in the top half of the figure represent superior, inferior, left 
lateral, and right lateral views, while the smaller images on the bottom show anterior, posterior, 
and left and right medial views. 
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Statistical SigniJicance 

In order to test the statistical significance of age interactions, we removed the gene x age 

and environment x age parameters and compared likelihoods to the full model. Figure 6.5 

plots p-values by vertex. Even without controlling for multiple testing, very few vertices 

had statistically significant gene x age interactions. In contrast, strong environmental 

interactions with age were observed throughout the data. 

Figure 6.5: Log of p-values by vertex for gene x age interaction (green) and -Log p-values for 
environment x age interaction (gray). Dotted lines indicate p-values of -05, .01, .001, .0001, and 
.00001. 

When projected on the brain surface (Figure 6.6), the probability map for gene x age 

effects was quite sparse, with focal clusters of significant vertices in left inferior 

supramarginal gyms and the superior frontal gyrus, particularly on the left. Regions of 

the superior temporal lobe bilaterally also had a few significant voxel clusters. In 

contrast, a large fraction of the cortex had significantly significant age x environmental 

interactions. The most significant changes in environmental variance occurred in the 

frontal lobes bilaterally, the lateral parieto-occipital cortex, and the inferior temporal 

lobes. 
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Figure 6.6: Probability maps displaying statistically significant interactions between variance 
components and age. 

Discussion 

Prior to MRI, surprisingly little was known about childhood brain development (Casey, 

Giedd, & Thomas, 2000; Giedd et al., 1996). MRI studies have dramatically increased the 

knowledge on how the brain changes as children grow but have only started to elucidate 

why the changes occur. The present study begins to answer the latter question. Our 

analyses suggest decreasing global variation in cortical thickness with age. When 

estimated separately, both genetic and environmental variance tends to decrease, but 

there are prominent exceptions to the rule. Most notable is an increase in genetically- 
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mediated variability in the superior parietal lobule, a region previously associated with 

high heritability. 

Yet the power to detect significant gene x age interaction was weak. The most significant 

interactions were in the superior frontal gyri and supramarginal gyrus, which, like the 

superior parietal lobule, were a priori regions of interest due to their high heritability. As 

no vertices met threshold for global significance, the utility of probability maps for these 

analyses is unclear. Maximum likelihood parameter estimates of heritability, however, 

were quite interesting. Broad sense heritability decreased in primary association cortices 

and the inferior surface of the brain, with increases in frontal lobe, parietal and temporal 

association cortices, and language centers. These changes temporally coincide with the 

development of refined skills in executive function, semantics, and abstraction commonly 

observed in the second decade of life (Berger et al., 1995; Flavell et al., 1993). 

Though these analyses provide a first glimpse of gene by age interactions in cortical 

development, the results are substantially limited by several difficulties in interpretation. 

First is the aforementioned lack of power. While it can be argued statistical significance 

is commonly overemphasized compared to maximum likelihood estimation, given the 

sheer number of models in these analyses the fact that relatively few vertices were 

significant at a relatively generous alpha should generate no small degree of skepticism. 

Concerns may be somewhat ameliorated by the fact that regions with the largest gene x 

age interactions were already regions of interest, though this observation is made post hoe 

and not mathematically integrated into the model. Changes in heritability with time 
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were predominantly driven by decreases in environmental variance rather than increases 

in genetic variance. It is noteworthy, however, that heritability maps in late childhood 

are very similar to maps previously generated in adults (Thompson et al., 2001). 

Nevertheless, hrther longitudinal modeling will be required in order to definitively 

establish gene x age interactions in children. 
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MULTIVARIATE MODELS OF ONGOGENETICALLY DIVERSE 
STRUCTURES 

"In complex organisms, early stages of ontogeny are remarkably refractory to 
evolutionary change, presumably because the differentiation of organ systems and 
their integration into afunctioning body is such a delicate process so easily derailed 
by early errors with accumulating eflects. Von Baer's fundamental embryological laws 
(1828) represent little more than a recognition that early stages are both highly 
conservative and strongly restrictive of later development. " 

--Stephen J. Gould and Richard C. Lewontin, "The spandrels of San Marco and 
the panglossian paradigm." Proceedings of the Royal Society of London. B 
205(116 l), 1979. 

SCHMITT JE, WALLACE GL, ROSENTHAL MA, ORDAZ, S.J., MALLOY EA, CLASEN LS, BLUMENTHAL JD, 
ROSE AB, UNDLER KS, NEALE MC, GIEDD, JN. MULTIVARIATE ANALYSES OF NEUROANATOMY [N A 
GENETICALLY MFORMATIVE PEDIATRIC SAMPLE. NEUROIMAGE. 2007. 
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An important component of brain mapping is an understanding of the relationships 

between neuroanatomic structures, as well as the nature of shared causal factors. Prior 

twin studies have demonstrated that much of individual differences in human anatomy 

are caused by genetic differences, but information is limited on whether different 

structures share common genetic factors. We performed a multivariate statistical 

genetic analysis on volumetric MRI measures (cerebrum, cerebellum, lateral 

ventricles, corpus callosum, thalamus, and basal ganglia) from a pediatric sample of 

326 twins and 158 singletons. Our results suggest that the great majority of 

variability in cerebrum, cerebellum, thalamus and basal ganglia is determined by a 

single genetic factor. Though most (75%) of the variability in corpus callosum was 

explained by additive genetic effects these were largely independent of other 

structures. We also observed relatively small but significant environmental effects 

common to multiple neuroanatomic regions, particularly between thalamus, basal 

ganglia, and lateral ventricles. These findings are concordant with prior volumetric 

twin studies and support radial models of brain evolution. 
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Introduction 

The inception of neuroembryology might be considered to be when von Baer, over 175 

years ago, first observed the neural tube in a vertebrate species and described its 

primordial subdivisions (von Baer, 1828). In the later half of the nineteenth century, Orr 

continued this work and detailed the initial segmentation of the nervous system into 

structural subunits, coined neuromeres, during embryogenesis in reptiles (Orr, 1887). 

Since these initial discoveries, neuroembryologists have chronicled the remarkable 

anatomical and cellular changes of the brain in great detail. Somehow, from the relative 

disorganization of the embryo evolves structure of extraordinary complexity. Despite its 

well-documented developmental sequence and our ever-expanding understanding of 

functional neuroanatomy, relatively little is known about the underlying forces 

responsible for the creation of the human brain. Presumably, our brain development is 

largely preordained by the genetic program given to us by our parents. Though heroic 

efforts in molecular genetics have identified thousands of genes with expression within 

the central nervous system (CNS) (Kandel et al., 2000), attempts to explain normal 

human variation via genetic polyrnorphisms responsible for normal human variation in 

CNS structure have thus far had limited success. 

The use of twin designs, wed with magnetic resonance imaging (MRI), provides a 

powerful non-invasive method to directly estimate the overall effects of genes and 

environment on human brain structure and function. Several previous studies have 

presented converging evidence that the predominant sources of variance in brain volumes 
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are genetic in origin. Most studies performed to date have used small sample sizes 

(Bartley et al., 1997; Biondi et al., 1998; Steinrnetz et al., 1995; Tramo et al., 1998), but a 

few more recent studies on larger samples have largely confirmed previous results (Baare 

et al., 2001a; Pennington et al., 2000). More recent twin designs also have included 

dizygotic twins, which enable the parsing of familial similarities into genetic and shared 

environmental sources. Though image processing methodologies differ substantially, 

univariate studies generally estimate that genes account for well over half of the variance 

in most volumetric regions of interest, particularly of the cerebral cortex. For example, 

BarrC et al. reported that genes accounted for of .90, 32 ,  and .88 of the total variance in 

total brain, gray, and white matter volumes, respectively, in 1 12 adult twin pairs (Baare 

et al., 2001a). Similarly, measures of the corpus callosum areas reveal heritabilities of .80 

or larger (Pfefferbaum et al., 2004; Pfefferbaum et al., 2000; Scamvougeras et al., 2003). 

Ln contrast, there is virtually no evidence that environmental factors shared between twins 

influence cortical brain volumes (Pennington et al., 2000; Posthuma et al., 2000b), 

although this may be obscured by non-additive effects of genes. 

The sources of variability of non-cortical structures are less well established, partially due 

to increased errors in measurement and partly because they are measured less often and 

usually in studies with quite small sample sizes. For example, the most comprehensive 

parcellation of the brain published in twins thus far was a study of 10 monozygotic (MZ) 

and 10 dizygotic (DZ) twin pairs (Wright et al., 2002). This study estimated heritabilities 

of .60 for corpus striatum, .79 for putarnen, and -67 for the cerebellum, and .OO for the 

thalamus. These estimates, however, were not statistically different from zero owed to 
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low statistical power. A study by White et al. found high interclass correlations in 

caudate, putamen, and thalamic volumes in a sample of 12 MZ twins compared to 12 

control subjects (White et al., 2002). The role of genes in measures of ventricular 

volumes also has been uncertain. While the first examination of lateral ventricular 

volume in twins suggested high heritability (Reveley et al., 1984), subsequent 

investigations have found a more modest role of genes, if any (Baare et al., 2001a). 

Though understanding the genetic epidemiology of individual brain regions is important 

in elucidating the biological substrates of neuroanatomic structure, determining how 

structures share common origins is equally vital. As yet, few imaging studies that have 

examined structural data in from a multivariate perspective, and with the exception of a 

handful of twin studies (2000; Baare et al., 2001a; Pennington et al., 2000; Posthuma et 

al., 2000b; Wright et al., 2002), those have focused more on psychopathological disorders 

with putative disruptions in neural connectivity than on control populations (Faraone et 

al., 2003; Herbert et al., 2003; Tien et al., 1996; Wright et al., 1999). Such a dearth of 

information from in vivo structural studies is surprising given the great interest in 

hc t iona l  connectivity and multivariate approaches in functional and diffusion tensor 

imaging (Ramnani, Behrens, Penny, & Matthews, 2004). Determining typical patterns of 

anatomic relatedness, particularly in comparison to functional models, could be 

informative in disentangling the relative contributions of ontological origin, subcranial 

environment, and functional connectivity in the development of neuroanatomic regions. 
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In this chapter, we attempt to fuse two lines of research, that of twin studies describing 

the genetic and environmental substrates of neuroanatomic endophenotypes with the 

rather limited literature examining the multivariate relationships between MRI volumetric 

measurements. Specifically, we employ factor analysis of several large brain structures 

(cerebrum, thalamus, lateral ventricles, telencephalic subcortical nuclei, corpus callosum, 

and cerebellum), of differing ontological origins and diverse functions. Given our 

genetically informative sample, we also were able to investigate whether global factors 

exert their influence via genetic or non-genetic mechanisms. 

Methods 

Sample Selection 

127 pairs of monozygotic twins (mean age = 11.6, SD = 3.3; age range = 5.6-1 8.7; 74 

[58%] male, 53 female) and 36 pairs of same-sex dizygotic twins (mean age = 11 .O, 

SD = 3.7; age range = 5.5-18.2; 18 [60%] male, 12 female) were included in this 

analysis. The sample also included a group of 158 singletons (mean age = 1 1.3, SD = 

3.5; age range = 5.2-18.7; 94 [59%] male, 64 female). Though singletons provide no 

genetic information, their addition substantially increased the precision of within- 

individual, cross-region correlations as well as total variance estimates for the 

phenotypes described below. 
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Image Processing 

Images were analyzed using the same voxel-intensity based classification and 

probabilistic atlas technique described in chapter 4. The resultant regions of interest 

obtained from image segmentation were gray and white lobar volumes, cerebellum, 

thalamus, lateral ventricles, globus pallidus, putarnen, caudate nucleus, and corpus 

callosum. To make the experiment computationally manageable, we chose 6 gross 

regions of interest that represent different ontological origins and neurological functions. 

Namely, we measured total cerebral volume (sum of gray plus white lobar volumes), the 

midsagittal area of the corpus callosum (CC), lateral ventricles (LV), thalamic nuclei, 

basal ganglia (sum of caudate nucleus, globus pallidus, and putamen; BG), and the total 

cerebellar volume. 

Statistical Analyses 

Since our structural models assume normally distributed variables, prior to analyses the 

distribution of the volumes of each structure was visually inspected for normality. All 

volumes appeared to be normally distributed, with the exception of lateral ventricles 

which had a leftward skew, caused by several outliers above the bulk of the distribution. 

Using SAS, we calculated descriptive statistics for all regions of interest (2000). We also 

calculated correlations between all volumes for visual inspection prior to modeling. Since 

preliminary simple linear regressions demonstrated a significant effect of age, race, and 

sex, we used residuals from multiple regressions including age sex and race as 
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explanatory variables. Thus, the resultant partial correlation matrix represents inter- 

anatomic relationships after removing the effects of age, sex, and race. 

Raw data were imported into Mx (Neale et al., 2002) for multivariate genetic analyses. 

Multivariate approaches enable the detection of common factors that influence multiple 

regions similarly, or alternatively can demonstrate independence of one structure relative 

to another. The multivariate approach also substantially increases power, as the use of 

inter-structure correlations provides additional information which improves statistical 

precision (Schmitz, Cherny, & Fulker, 1998). The presence of genetically informative 

data additionally allows the parsing of total variance of each structure into contributions 

from additive genetic (A), shared environmental (C) and unique environmental 

components (E) based on the differences in genetic correlations between MZ and DZ 

twins (Neale et al., 1992). 

We attempted to model the relationships between structures via two alternative 

techniques. In addition to traditional factor analytic approaches (described below), we 

also constructed Cholesky decompositions to calculate descriptive statistics of broad 

sense heritability and genetic correlations. Ln all models, we employed maximum 

likelihood (Edwards, 1972) in order to generate the most probable parameter estimates 

(i.e. maximum likelihood estimates) for any given model. All models also included a 

means component that regressed out the contributions of sex, age, and race to the 

variance in each neuroanatomic region of interest (ROI). 
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Cholesky Decompositions 

We used Cholesky factorization to calculate genetic and environmental correlation 

matrices, as well as estimates of the proportion of variance due to genetic (a2), shared 

environment (c2), and unique environment (e2). Since the parameters of a Cholesky 

decomposition imply directionality of the latent factors, their direct interpretation is 

probably inappropriate for the present data (Loehlin, 1996). However, the approach 

permits unbiased estimation of inter-structure correlations, parceled into relationships of 

either genetic or environmental origin (Crawford & DeFries, 1978). The genetic 

correlation, which measures the degree of overlap between the genetic forces on two 

phenotypes, can be written mathematically as: 

where A, is the genetic covariance between structures x and y, and A, and A, represent 

the proportion of the variance due to genetic factors for x and y, respectively (Falconer & 

Mackay, 1996). Similar calculations can be used to measure the role of shared and unique 

environment. We also determined the proportion of genetic, shared environmental, and 

unique environmental covariance relative to the total phenotypic variance. Finally, we 

calculated eigenvalues from standardized covariance matrices (i.e. correlation matrixes) 
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for these analyses for A, C, and E separately, to estimate the best number of latent factors 

to employ in subsequent analyses. 

Factor Analyses 

A common goal of multivariate analysis is to extract latent constructs that explain the 

covariance between observed measures. Ideally, the relationship between a large set of 

variables can be accounted for by a relatively small number of factors. In our analyses, 

we tested two families of models; that of the independent pathway (i.e. biometric) and the 

common pathway (i.e. psychometric) models (Kendler, Heath, Martin, & Eaves, 1987; 

Mcardle & Goldsmith, 1990; Neale et al., 1992). Independent pathways models (IPM) 

allow genetic, shared environmental, and unique environmental common factors to affect 

observed variables directly, while in common pathways models (CPM) these factors exert 

their influence through a shared, latent phenotype (Figure 7.1). In both models, each 

observed variable is permitted a residual variance term, which can also be parsed into A, 

C, and E (Evans, Gillespie, & Martin, 2002). Though IPMs are conceptually simpler, 

CPMs require fewer parameters and are thus favored by the rules of parsimony, all things 

being equal. However, in the case of neuroanatomic data, a biometric structure would 

seem the superior hypothesis, as genetic and environmental factors would be expected to 

impact brain volumes directly via independent channels. 
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Figure 7.1: Two putative factor models for explaining covariance in neuroanatomic data. While the 
independent pathways model (a) allow genes A, C, and E to directly influence the observed variables, the 
common pathways model (b) their effects are mediated via a shared latent variable. A, C, and E are 
modeled to have means of zero and variances of one. For both models, residual variance can be 
partitioned as well; thus if common factors are removed, both models collapse to univariate analyses run 
in parallel. 

In addition to models with a single common factor for each of the three etiological 

sources (A, C, and E), we also constructed more complex models which allowed for 2 

common factors for each variance component (Figure 7.2); two-factor solutions were 

suggested by a scree plot of eigenvalues from the Cholesky decomposition. The models 

are near the upper limit of mathematical feasibility (i.e. they are close to being 

underidentified) for a six-variable multivariate analysis. We designated the most complex 

of these the 2-2-2 IPM and 2-2-2 CPM models since they each contain 2 additive genetic, 

2 shared environmental, and 2 unique environmental common factors. For models with 2 

common factors of identical etiology (i.e. genetic), we arbitrarily removed one path from 

the second factor to an observed variable (cerebrum) in order to fix the rotational 

indeterminacy inherent in models with two or more factors. 
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A B 
Figure 7.2: Examples of expanded models allowing for multiple factors for each variance 
component. The 2-2-2 IPM (a) represented the most complex model that was fit to the data; all 
other models were nested submodels of t h e  2-2-2 IPM. Dotted lines represent parameters that 
were fixed to zero in order to make factors orthogonal. The 2-0-2 IPM (b) represents the best-fit 
model, both by X2 tests and AIC. 

Under certain regularity conditions, the difference in -2 times the log likelihood (-2LL) of 

any model and a nested submodel follows a X2 distribution with degrees of freedom equal 

to the difference in the number of parameters. Therefore, we could directly test whether 

simpler models fit the data significantly worse than more complex versions. In particular, 

we were interested in determining whether shared environmental factors are important in 

explaining covariance, since prior univariate analyses would suggest that the shared 

environment has little to no impact on the variability of most brain regions. For all 

comparisons, we also calculated Akaike's information criteria (AIC), as X2 - 2 * df, which 

rewards parsimony in addition to goodness of fit (Akaike, 1987); negative values imply 

that the nested submodel is a more parsimonious fit than the full comparison model. 

From the best-fit model (2-0-2 IPM), we standardized parameter estimates to facilitate 

interpretation and performed orthogonal rotation via the VARIMAX procedure in SAS 

(2000). In order to generate likelihood-based confidence intervals on the rotated 

parameter estimates (Neale et a]., 1997), we reran the best-fit model in Mx, but freed the 
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two paths previously fixed to zero and instead fixed the rotated factor loadings of the 2"d 

A and E common factors that were closest to zero. As an alternative and perhaps more 

familiar metric of the statistical significance of individual parameters, we also attempted 

to drop each parameter from the model and test whether the fit to the data deteriorated 

significantly. This approach is therefore completely analogous to tests of significance of 

individual beta weights in a multiple regression model. 

Graymi t e  Cerebral Comparisons 

Our primary analyses combined cerebral gray and white matter volumes into a single 

variable, since we had no tissue-specific information for non-cerebral structures. 

However, since other studies have analyzed graylwhite differences (Baare et al., 2001a), 

we calculated genetic and environmental correlations from a Cholesky decomposition 

that split total cerebral volume into gray and white matter in order to facilitate 

comparisons between studies. 

Covarying for Total Brain Volume 

To investigate relative differences in inter-structure covariance rather than absolute 

differences, we repeated the factor analysis procedure described above, but included total 

brain volume (TBV) as a regressor. With this exception, our mathematical modeling 

approach was identical to that described previously. 
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Table 7.1: Descriptive statistics for all anatomic structures analyzed in the present study, split 
by zygosity status. Mid sagittal corpus callosum is measured in square mm, while volumetric 
measures are in cubic centimeters. 

Results 

Total Cerebrum 

Lateral Ventricles 

Corpus Callosum 

Thalamus 

Basal Ganglia 

Cerebellum 

Cerebral Gray Matter 

Cerebral White Matter 

Descriptive Statistics 

Means and standard deviations for all measures are given in Table 7.1. Singletons, MZs, 

and DZs had comparable means and variances for all structures measured. A cross-twin 

correlation matrix for both MZ and DZ groups is provided in Table 7.2. In general, 

within-structure, cross-twin correlations were substantially higher in the MZ than in the 

DZ twins, suggesting a strong role of genetic factors on the variance in brain volumes. 

The role of genetic factors in the cerebellum appeared to be more modest, and even less 

prominent for the lateral ventricles. When examining within-individual, cross-structure 

MZ (N'= 180) 

Mean SD 

1104.59 107.03 

11.71 6.13 

529.99 69.48 

17.22 1.35 

25.04 2.17 

131 -43 11.79 

725.07 68.09 

379.52 49.79 

DZ (N = 72) 

Mean SD 

1111.63 100.62 

10.80 5.21 

527.50 62.32 

17.21 1.38 

25.47 2.17 

129.84 12.06 

730.88 60.66 

380.75 48.09 

Singletons (N = 158) 

Mean SD 

1106.06 111.72 

10.90 6.01 

530.83 81.53 

17.50 1.55 

25.67 2.41 

129.83 12.26 

726.05 75.14 

380.01 51.18 
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correlations the cerebrum, thalamus, and basal ganglia were highly intercorrelated. 

Correlations with the lateral ventricles were low; indeed a small negative correlation was 

observed between the basal ganglia and lateral ventricular volumes. The corpus callosum 

also was not correlated with other structures. The cross-twin, cross-structure correlations 

are much greater in MZ than DZ twins, suggesting that much of the observed correlations 

between structures are genetically-mediated. 

Table 7.2: Cross twin correlation matrix of six neuroanatomic regions. MZ correlations are 
shown below the diagonal, while DZ twins are above (shaded). Within-structure, cross-twin 
correlations are shown in bold. Abbreviations are as follows: Cer-cerebrum, LV-lateral ventricles, 
CC-corpus callosum, Thal-thalamus, BG-basal ganglia, Cb-cerebellum. 

Cerl 

LVI 

CC1 

Thall 

BG 1 

Cbl 

CeR 

LV2 

CC2 

Thal2 

BG2 

Cb2 

Cerl LV1 CC1 Thall BG1 Cbl 

1.00 0.22 0.29 0.75 0.77 0.68 

0.34 1.00 -0.09 0.06 -0.05 0.27 

0.15 0.02 1.00 0.31 0.15 0.22 

0.80 -0.06 0.15 1.00 0.90 0.50 

0.76 -0.11 0.27 0.91 1.00 0.53 

0.58 0.26 0.23 0.48 0.43 1.00 

0.88 0.10 0.17 0.66 0.69 0.57 

0.14 0.65 -0.01 -0.05 -0.15 0.15 

0.29 0.09 0.83 0.24 0.17 0.23 

0.75 0.03 0.19 0.80 0.79 0.51 

0.76 0.00 0.21 0.75 0.83 0.52 

0.59 0.09 0.18 0.52 0.53 0.79 

Cer 

2 LV2 CC2 Thal2 BG2 Cb2 

0.34 0.08 -0.37 0.37 0.42 0.38 

0.19 0.39 -0.08 0.11 0.15 0.10 

0.18 -0.08 0.26 0.18 0.14 0.22 

0.20 0.04 -0.41 0.32 0.34 0.42 

0.26 0.07 -0.46 0.27 0.33 0.41 

0.13 0.09 -0.10 0.13 0.22 0.54 

1.00 0.12 0.28 0.77 0.85 0.67 

0.28 1.00 -0.16 -0.03 -0.05 0.15 

0.09 0.04 1.00 0.30 0.19 0.23 

0.86 -0.09 0.22 1.00 0.96 0.56 

0.78 -0.16 0.27 0.94 1.00 0.56 

0.69 0.30 -0.01 0.63 0.63 1.00 

Variance components estimates from the Cholesky decomposition are given in Figure 

7.3. As expected, neural tissue demonstrated high heritability, with the cerebellum 

slightly lower than other structures. The variance in lateral ventricular volume was 

equally divided between genetic, shared environmental and unique environmental 
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Figure 7.3: Variance components estimates obtained from Cholesky decomposition. a2, c2, and e2 
represent the proportion of variance due to additive genetic, the shared environment, and the 
unique environment, respectively. Bars denote likelihood-based 95% confidence intervals. 

Cerebrum LV CC Thalamus RG Cerebellum 

sources. Table 7.3 reports genetic and environmental correlations and reveals the extent 

to which different structures share genetic and environmental sources of variance. The 

genetic substrates of cerebrum, thalamus, basal ganglia, and cerebellum are highly 

intercorrelated. There was a small but statistically significant genetic correlation between 

corpus callosum and cerebrum, thalamus, and basal ganglia. Cross-structure correlations 

attributable to the unique (i.e. individual-specific) environment were generally lower, but 

were still substantial between thalamus and basal ganglia and between cerebrum and 

cerebellum. Interestingly, there was a small but statistically significant negative 

environmental correlation between the lateral ventricles and both thalamus and basal 

ganglia. 
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Table 7.3: Sources of correlation between neuroanatomic regions. Genetic correlations are given 
below the diagonal; unique environmental correlations are above it (shaded). 95% confidence 
intervals are given in parenthesis. Estimates of shared environmental correlations all had 
extremely wide confidence intervals and were uninformative; therefore they are not reported. 

I Cerebrum LV I CC 1 Thalamus I BG I Cerebellum 

Cerebrum 

LV 

CC 

Thalamus 

BG 

The role of the environment, however, was quite minor relative to the impact of genetic 

structures on neuroanatomic covariance. Since the environmental correlation represents 

the proportion of unique environmental variance shared between two structures, it 

excludes variance attributable to other sources. In other words, these values are 

standardized relative to the unique environmental variance components, which can be 

quite small. Table 7.4 reports how genetic and environmental covariance relates to the 

total phenotypic variance in each structure. The highest shared environmental correlation 

was .17, and the highest unique environmental correlation was .12, with most values near 

zero. In contrast, the majority of the genetic correlations were greater than .20, with the 

highest (basal ganglia vs. thalamus) estimated at .70. 

I I I I I I 

1 

. I8 (-.33 .69) 

.30 (.05 .52) 

.97 (.83 1.0) 

.82 (.71 .92) 

Cerebellum 

.26 (.06.43) 

1 

.22 (-.54 .74) 

.OO (-.49 .65) 

-.37 (-.a0 .24) 

.82 (.59 1.0) 

.37 (.17.54) 

-.05 (-.25 .15) 

1 

.42 (.I1 .66) 

.35 (.07 .64) 

.20 (-.59 .71) 

.35 (.I6 .51) 

-.22 (-.40 -.03) 

.49 (32 .63) 

1 

.91 (.81 .98) 

.79 (.44 1.0) . I2 (-.38 .57) 

.23 (.03.42) 

-.23 (-.41 -.03) 

.39 (.I9 55) 

.65 (52.75) 

1 

.63 (.29.93) 

.58 (.43 .70) 

.29 (.I0 .46) 

.I0 (-.I1 .30) 

.07 (-.I 3 .27) 

. I3 (-.07 .33) 

1 
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Table 7.4: Variance components relative to the total phenotypic variance, with 95% confidence 
intervals provided. Additive genetic effects are given below the diagonal, and environmental effects 
(shaded) above the diagonal. The correlations for shared environment are given in italics, below the 
calculations for the unique environment. The values on the diagonal represent parameter estimates 
for e2, c2, and a2. 

Factor Analyses 

Our most parameterized model, the 2-2-2 IPM, did not fit the data significantly worse 

Cerebellum 

0.09(.06.14) 

0.13(-.05.37) 

0.08 (.03 .15) 

0.07(-.20.33) 

0.02 (-.02 .06) 

O.lO(-.15.33) 

LV 

CC 

than the fully saturated Cholesky, despite its comparative simplicity (x:, = 10.2, p = 

.5980, AIC = -13.8). The 2-2-2 CPM also did not differ significantly from the full 

Thalamus 

BG 

Cerebellum 

Cerebrum 

0.12(.09.17) 

0.05(.00.29) 

0.82 (.59 91) 

0.09 b12.23) 

0.23 (.03.39) 

Cholesky (Xi, = 35.08, p = .1369, AIC = -18.92) but was more parsimonious. The 

relative equivalence between the LPM and CPM models was driven by the eleven shared 

environmental common parameters in the IPM that were largely uninformative. 

0.70 (.50.80) 

0.62 (.40 .74) 

0.46(.22 .66) 

LV 

0.06(.01.11) 

0.08(-.12.27) 

0.40 (.29 .53) 

0.30(.00.57) 

0.31 (.03.64) 

0.10 (-.I8 .31) ----- 

0.00 (-.20.22) 

-0.17 (-.33.08) 

0.07 (-.18.35) 

BG 

0.03(.00.07) 

0.07(-.03.28) 

-0.06 (-.A3 -.01) 

0.12(-.11.27) 

0.07 (.03.12) 

-0.03(-.18.17) 

- 

CC 

0.05(.02.09) 

0.01(-.13.20) 

-0.01(-.07 .04) 

-0.08(-.27.19) 

0.16 (.I1 .23) 

0.13(.00.46) 

0.71 (.38 .87) 

Thalamus 

0.05(.02.09) 

0.021-.06.23) 

-0.06 (-.I2 -.01) 

0.04(-.17.23) 

0.08 (.05.13) 

-0.01(-.16.21) 

0.29 (.06.45) 

0.26 (.04 .42) 

0.07 (-.17.32) 

0.18 (.A3 .25) 

0.18(.00.38) 

0.64 (.39 .83) 

0.61 (.37 .76) 

0.40(.17.62) 

0.12 (.08 .18) 

0.11(-.03.34) 0.15(-.06.38) 

0.19 (.14.27) 0.02 (-.02 .07) 

0.12(.00.38) 0.17(-.05.40) 

0.69 (.42 .84) 

0.33 (.10.56) 

0.40 (.04.67) 

0.39(.11 .76) - 
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Removing these parameters (producing the 2-0-2 IPM) did not significantly affect the fit 

of the model (vs. full Cholesky: x i= 17.0, p = 3093, AIC = -29.0; vs. 2-2-2 I P M : ~ ~  = 

6.8, p = 3147, AIC = -15.2) and produced superior explanation of the data compared to 

the 2-2-2 CPM. Further attempts at reduction of the 2-0-2 IPM were unsuccessful (vs. 1 - 

0-2 IPM: x: = 20.4, p = .OO 1 1, AIC = 10.4; vs. 2-0- 1 PM:  = 6 1.8; p < .000 1 ; AIC = 

5 1.8), as were other factorial combinations of IPM and CPM submodels. 

The varimax-rotated parameter estimates for the 2-0-2 P M  are given in Table 7.5. Of the 

two common genetic factors identified, one strongly influenced variance of cerebrum, 

thalamus, and basal ganglia, with factor loadings (analogous to standardized partial 

regression coefficients) of about -85. This factor also accounted for a substantial 

proportion of the genetic variance of the cerebellum, and had a low but statistically 

significant effect on corpus callosum, but no impact on lateral ventricular volumes. The 

second genetic factor predominantly comprised the modest genetic effects on ventricular 

volume, with a statistically significant negative factor loading on the basal ganglia 

compartment. 
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Table 7.5: Parameter estimates for the best-fit factor model (2-0-2 IPM). A1 and A2 represent common genetic factors, while E l  and E2 
are environmental sources unique to individuals, but shared between brain regions. Shared environmental common factors were not 
statistically significant. Values represent factor loadings, with 95% confidence intervals given in brackets. Factor loadings for structure- 
specific factors also are given, as are proportional variance components estimates under this model, for each structure in the analysis. 

I Common Factors I Structure-Specific Factors I Heritability Estimates 

Cerebrum 

Thalamus 

.85 (.76 .95) .22'(.07 .35) .I3 (.06 .21) .29 (.21 .37) 

Cerebellum 

-85 (.76 .95) .019 .40 (.32 .49) .009 

.33'(.23 .42) .02 (-.48 .52) .I4 (.01 .30) 

* p <.001; p < -05; $ ~ i x e d  to make factors orthogonal 

.64 (.53 .75) .14' (.004 .34) .02 (-.08 .12) .31 (.20 .42) 

.88 (.77 .91) .OO (.OO .13) .12 (.09 .17) 

.OO (-91 .92) .30 (.22 .37) .I 7 (.07 .28) .72 (.64 .85) .09 (.OO .14) . I9 (.14.26) 

.33 (-.01 .66) .49 (.27 .70) .34 (.01 .26) .55 (.36 .81) .24 (.OO .40) .21 (.A6 .29) 
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Similarly, two unique environmental common factors were identified, though the pattern 

of effects was quite different than that of the genetic factors. One environmental factor 

primarily contributed to variance in all deep structures (thalamus, BG, LV, and corpus 

callosum), with antagonism between the ventricles and the other variables. The second 

represented relationships between the cerebrum, lateral ventricles, and cerebellum. 

Structure-specific factors contributed far less variance than the common factors with the 

exception of the corpus callosum where genetic factors specific to that structure 

accounted for 69% of the variance. Less than 10% of the variance in corpus callosum size 

could be explained by genetic sources that also affected other structures in the analysis. 

GrayIWhite Correlations 

Genetic correlations between cerebral tissue compartments and other structures are given 

in Table 7.6. The genetic effects influencing gray and white were highly correlated (34;  

95% CI [.65 .99]), while there was virtually no environmental correlation (.--04; 95% CI 

[-.24 .17]). In general, correlations did not differ when comparing either cerebral gray or 

white to other structures. The primary exception was corpus callosum, which had higher 

genetic (.49 versus -09) and environmental (.43 versus .16) correlations with cerebral 

white matter volumes relative to gray. Additionally, the environmental correlation 

between cerebellum and cerebral gray (.57) was significantly higher than cerebellum with 

cerebral white (.22). 
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Table 7.6: Genetic and environmental correlations between the cerebrum and other 
neuroanatomic structures, after segmenting cerebral tissue into gray and white matter. 95% 
confidence intervals are given in parentheses. 

Additive Genetic I Unique Environment 

Gray White Gray White I 
Cerebral White .84 (.65 .99) 1 .OO 1 -.04 (-.24 .17) 1 .OO 

Cerebral Gray 1 .OO .84 (.65 .99) 

Thalamus .88 (.69 .99) .96 (.82 1) .38 (.20 5 4 )  

1 .OO -.04 (-.24 .17) 

Cerebellum .73 (.44 .99) .88 (.56 1) .22 (.03 .41) 

Total brain volume as a covariate 

As expected from the previous finding that a single genetic factor dominated inter- 

structure covariance, the genetic correlations between structures dropped substantially 

when adjusting for total brain volume (Table 7.7). We still detected a high, statistically 

significant genetic correlation between thalamus and basal ganglia (rG = .72), and a 

negative genetic correlation between basal ganglia and the lateral ventricles (rG = -.88). 

The non-genetic inter-structure correlations, however, differed substantially when the 

analyses was adjusted for global effects. Rather than a general pattern of positive 

correlations between structures detected previously (with the exception of negative 

correlations involving lateral ventricles), the environmental correlations had a more 

complex pattern. Both the thalamus and basal ganglia structures were negatively 

correlated with cerebral volumes, but positively correlated with each other. The lateral 

ventricles retained their mostly negative environmental correlations with other structures. 
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There was a small but statistically significant negative environmental correlation between 

the cerebellum and the thalamus, and all telencephalic tissues showed negative 

correlations with the cerebellum, though none approached statistical significance. 

Table 7.7: Genetic and environmental correlations derived after regressing on total brain volume. 
Genetic correlations are given below the diagonal, and environmental above the diagonal and 
shaded. 

When performing factor analyses, the 2-2-2 IPM (x;?, = 8.1; p = .7807; AIC = -15.94) 

did not fit the data significantly worse than a Cholesky decomposition. However, the 2-2- 

2 CPM was rejected relative to either the full Cholesky (x% = 175.26; p < .0001; AIC = 

115.26) or the 2-2-2 IPM (x:, = 167.21; p < .0001; AIC = 131.21). A stepwise removal 

of latent factors indicated that the 2-0-2 IPM was once again the best fit model (vs. 

Cholesky: X& = 19.3; p = .68 14; A1C = -26.66, vs. 2-2-2 IPM: x : ~  = 1 1.2; p .4199; AIC 

= -10.72). However, the patterns of genetic and environmental associations differed 

substantially when examining residual variance after adjusting for TBV (Table 7.8). In 

general, the structures shared less variance with each other, though one common factor 

indicated that the thalamus and the basal ganglia shared a substantial proportion of their 

genetic variance, and a second genetic factor influenced both the cerebral compartment 

Cerebrum 

LV 

CC 

Thalamus 

BG 

Cerebellum 

Cerebrum 

1 

.I3 (-.87 .59) 

.34 (.01 .82) 

.34(-.161) 

.02 (-.I9 .80) 

-.09 (-.96 1) 

LV 

.17(-.02.36) 

1 

.I2 (-.61 .68) 

-.59(-.99.32) 

-.88 (-1 -.34) 

.I2 (-1 .85) 

CC 

.15(-.06.34) 

-.09(-.28.12) 

1 

.64(.00.99) 

.26 (-.I0 .64) 

-.23 (-1 .39) 

Thalamus 

-.41(-.56-.22) 

-.36(-.52-.19) 

.33 (.I4 .50) 

1 

.72 (.21 1) 

-.25 (-.99 .82) 

BG 

-.41(-.57-.21) 

-.33(-.49-.15) 

.22 (.01 .41) 

.59 (.44 .71) 

1 

-.03 (-.go 1) 

Cerebellum 

-.16(-.35.05) 

.20(.00.38) 

-.I 2 (-.32 .09) 

-.27 (-.44 -.07) 

-.I0 (-.29 .I 1) 

1 
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and the corpus callosum. Two common individual-specific environmental factors also 

emerged; one influencing thalamus and the subcortical compartment in an opposite 

direction to cerebrum and lateral ventricles, and one whose effects influenced cerebrum 

and cerebellum in opposite directions. 

Table 7.8: Parameter estimates for the best fit model (2-0-2 PM) after covarying for total 
brain volume. 

'p x.001; $ I p  < .05; $ ~ i x e d  to make factors orthbgonal 
I 

Cerebrum 

LV 

CC 

Thalamus 

BG 

Cerebellum 

Heritability Estimates 

a2 c2 e2 

.68 (.35 .77) .OO (.OO .30) .32 (.22 .44) 

.17(.06.66) .43(.00.55) .40(.30.52) 

.65 (.34.88) . I9 (.OO .49) .I6 (.I1 .22) 

.42 (.23 .71) .22 (.OO .38) .36 (.27.48) 

.64 (.49.74) .OO (.OO .09) .36 (.26.50) 

.24(.00.70) .49(.05.74) .27(.20.37) 

Common Factors 

A1 A2 E I E2 

.OO .48 -.39' .40b 

.37 .I0 -.23' -.14: 

. I7 .50 .08 .18' 

.52 .28 .50' .16' 

.79 -.03 .41* . 06~  

.05 .04~  -.06 -.23' 

Structure-Specific 

Factors 

As Cs Es 

.68: .OO . O l  

. I3 .66 .57 

.60 .44 .35 

.27 .47 .30 

.OO .OO .44 

.50 .69' .46 
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Discussion 

One of the fundamental questions in neurogenetics is how our relatively simple genetic 

programming combines with environmental exposure to produce variation in human 

brain volumes. Our data suggest that not only do genes play the predominant role in 

generating the observed volumetric diversity, but that most of the genetic variance is 

determined by genes that are shared between the major gross neural subdivisions. 

Concordant with previous univariate studies, the contribution of the shared environment 

to variance was negligible, while the individual-specific environment had smaller but 

statistically significant factors common to multiple regions; an environmental factor 

influencing ROIs beneath the cortical surface (corpus callosum, thalamus, and basal 

ganglia), and a non-subcortical factor (cerebrum, lateral ventricles, and cerebellum) were 

identified. Though both genetic and non-genetic effects are critical for explaining 

neuroanatomic covariance, these data additionally suggest that, at this level of spatial 

resolution, genes and environment exert their influences on brain variation largely 

independently of one another. 

Such a strong role of genes on the correlations between brain volumes was not 

unexpected given prior multivariate twin studies. One study methodologically similar to 

the present one, performed by Barre et al., examined relationships between height, 

intracranial volume (ICV), total gray matter, total white matter, and lateral ventricular 

volumes in 54 MZ and 58 DZ adult twin pairs and 34 sibs of DZ pairs via variance 

component analyses (Baare et al., 2001a). They found remarkably similar estimates of 
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genetic (.68) and unique environmental (.04) correlations between gray and white matter, 

and no statistically significant evidence of genetic correlations between the lateral 

ventricles and other regions of interest. Nevertheless, the two studies do differ in several 

aspects, most notably in that the present study includes several neuroanatomic regions of 

interest while the study by Barrk et al. focused on a few global cerebral measures and 

correlations between these measures and height and ICV. A similar approach was taken 

in an earlier study by Posthuma et al. which used a trivariate Cholesky decomposition of 

height, intracranial space, and cerebellar volume in an extended twin design (Posthuma et 

al., 2000b) of 11 1 twin pairs and 34 sibs. They estimate cerebellar heritability of .88 with 

significant sex effects on mean cerebellar volume, with a relatively high genetic 

correlation to the ICV (.57) and a low genetic correlation to height (.25). Though this 

study represents an important contribution to methodological design and advancement of 

the use of volumetric data as a novel endophenotype, its focus is not on relationships 

between brain regions but rather on relationships between brain volumes and non-neural 

phenotypes. 

To date, only two other studies, to our knowledge, have employed genetically 

informative data to describe multivariate neuroanatomic relationships. A principle 

components analyses by Pennington et al. on a modest sample of 34 MZ and 32 DZ late 

teen or young adult twin pairs parcellated the brain into 7 cortical gray compartments and 

6 noncortical structures (white matter, basal ganglia, brain stem, hippocampus, 

cerebellum, and the central gray nuclei including the thalamus) found that two factors 

could account for 64% of the total phenotypic variance. While cerebral structures loaded 
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primarily on the first factor, all other structures loaded on the second (except central gray, 

which loaded equally on both). Both factors were significantly more correlated in MZ 

than in DZ pairs, suggesting a strong genetic component to each. This approach differs 

substantially from the present study, not only in its use of principal components analyses 

rather than factor analyses, but also because it generated factors prior to decomposing 

variance. By contrast, we determined factor structure and variance components 

simultaneously using maximum likelihood. The study by Pennington et al. also has been 

criticized since greater than 70% of both MZ and DZ samples had dyslexia, though it is 

unclear how large of an effect this difference would have on a global multivariate 

analysis. 

Despite the differences in study design, the findings between the two studies are largely 

complementary. Both find two strong genetic factors influencing inter-structural 

covariance. The factor loading pattern of the Pennington study does differ in that non- 

cortical structures are not particularly correlated with cortical structures. This discrepancy 

may be owed in part to the use of ICV as a covariate in the Pennington study. After 

regressing out the effects of total brain volume, we did observe a genetic factor that was 

primarily cerebral (total cerebral volume and corpus callosurn), with a second genetic 

factor that loaded on non-genetic structures (with thalamus loading on both). However, 

the cerebellar measure in the present study had no genetic covariance with other 

structures after adjusting for brain volume, while in the Pennington study the cerebellum 

had a factor loading of .7 1 on the "non-cortical" factor. Though the exact cause for the 

discrepancy is unclear, it could be due to differences in statistical methodology, as 
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principle components analyses include structure-specific variance within its factors, while 

the factor analytic approach explicitly defines this variance as independent of common 

factors. Differences in cerebellar quantification also may play a role. 

The final extant multivariate twin study by Wright et al. (Wright et al., 2002) parcellated 

the brain into regions with extremely high spatial resolution. Ninety-two (primarily 

cerebral) gray matter ROIs were automatically defined, roughly according to Brodrnann's 

areas. Global effects were accounted for by adjusting for total gray volumes. Genetic 

correlations for each ROI pair were first calculated via a series of bivariate factor 

analyses, and then principle components analyses were applied to the resultant correlation 

matrix. This study identified two putative supra-regional principle components under 

genetic control. Specifically, a frontoparietal limbic/paralimbic factor and a factor related 

to audition (lateral temporal cortex, insula, occipitofrontal, and other frontal regions) 

were found; factor loadings, however, were quite low (< 10.251). These findings would 

suggest that genes are involved in generating functional relationships between distant 

brain regions. Though extremely provocative, Wright et al.'s study is limited by low 

power, due to small sample size (10 MZ and 10 same sex DZ pairs) and issues of 

multiple testing. 

The process of neurogenesis is extraordinarily complex. Though neurovolumetric 

changes are observed throughout childhood (Giedd et al., 1996; Gogtay et al., 2004; 

Sowell et al., 2004a; Sowell, Thompson, Holmes, Jernigan, & Toga, 1999; Sowell et al., 

1999), the majority of brain formation occurs in utero and most of the genes involved in 
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neurodevelopment are also expressed at this time (Rakic & Lombroso, 1998; Rubenstein 

& Rakic, 1999b; Rubenstein et al., 1999a). In animal models, a multitude of genes 

responsible for brain patterning have now been identified, whose products include 

transcription factors, morphogens, and apoptotic factors (Rubenstein et al., 1999b). The 

initial discovery of the Hox family of transcription factors and their segmental patterns of 

expression in the hindbrain have argued strongly for the neuromeric models of brain 

organization (Lumsden & Krumlauf, 1996; Mcginnis & Krumlauf, 1992; Puelles, 200 1 a); 

more recent studies on the forebrain have suggested that although its development is 

more plastic and cell lineages appear less restricted, the prosencephalon also follows 

segmental (i.e. prosomeric) patterning based on expression of homeotic and related genes 

(Anderson, Mione, Yun, & Rubenstein, 1999; Puelles, 2001a; Rubenstein et al., 1999b; 

Puelles, 200 1 a; Rubenstein et al., 1999b) . Though mutations in neurodevelopmental 

genes have been shown to produce severe pathological states in humans (Clark, 2004), 

the genetic and environmental agents responsible for typical human variation are still 

unknown. 

Theoretically, genetic associations between neuroanatomic structures could arise via 

numerous putative mechanisms; several general models can be considered while 

interpreting the present data. First, brain volumes may be related genetically via 

ubiquitous gene products involved in basic cellular metabolism, cell growth, 

differentiation, or other global processes expressed throughout neuroectodermal 

derivatives (Rakic, 1995). For example, functional variation in housekeeping genes or 

cell cycle regulators might be expected to produce genetic correlations between all brain 
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regions that express them (and perhaps other tissues), if they produce downstream effects 

on volumetric measures via changes in cell proliferation or survival (Figure 7.4). Second, 

correlations in brain volumes may represent vestigial relationships generated prenatally 

between structures with shared ontogenetic origins. Region-specific expression of 

transcription factors during neuroembryonic patterning would be one example of gene 

products producing regional correlations during embryogenesis. In this case, one would 

expect stronger genetic relationships among structures whose development diverged 

more recently (e.g. thalamic and hypothalamic volumes to be correlated via their shared 

diencephalic origin). Third, functional interrelationships between structures may generate 

volumetric correlations via morphological changes associated with increased 

connectivity. This hypothesis is essentially a generalization of the Protocortex model, 

which states that neocortical development is determined by extrinsic influences, such as 

effects of thalarnic innervation (Schlaggar & O'Leary, 199 1 ; O'Leary, 1989). Thus, one 

might expect structures in the visual processing network, such as V1 and the lateral 

geniculate nucleus, to be structurally correlated despite being potentially unrelated 

spatially or ontogenetically. Finally, genetic correlations may result from shared supra- 

regional gene expression triggered postnatally, in the present data from birth to the age of 

scan acquisition, approximately mid-childhood. 
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Figure 7.4: Rakic's hypothesis of cortical 
expansion. Proliferation (panel A) of progenitor 
cells (P) in the ventricular zone (VZ) precedes 
migration (panel B) to the cortical plate (CP). 
An increase in the number of cell cycles prior to 
migration would produce a dramatic increase in 
the number of cortical neurons at maturity. 
Adapted from Rakic et al, 1995. 

The present data indicates that much of the variability in brain volumes is caused by 

genes shared between all tissue compartments. This finding is concordant with 

evolutionary genetic models of brain development which hypothesize global, genetically- 

mediated differences in cell division as the driving force behind interspecies differences 

in total brain volume (Finlay & Darlington, 1995) as well as with the radial unit 

hypothesis of neocortical expansion proposed by Rakic (Rakic, 1995). Comparative 

neuroanatomic analyses of multiple mammalian species (e.g. Figure 7.5) have shown that 

total brain volume is highly correlated with regional volumes, irrespective of region 

(including neocortex, striatum, thalamus, and cerebellum), and accounts for the vast 

majority (>96%) of the observed volumetric variance in all regions measured except for 

the olfactory bulb (Darlington, Dunlop, & Finlay, 1999; Finlay et a]., 1995). Such strong 

correlations are thought to reflect a generalized adaption to specific selective pressures; 

although it is more expensive, in terms of energy, to expand the computational resources 

of the entire brain when only specific functions are needed, the molecular adjustments 

required are far fewer than those required to completely repattern gross neural 

architecture. 
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Figure 7.5: Scatterplots regressing the size of several neuroanatomic substructures (labeled at 
right) on total brain volume for 131 mammalian species. Parameters in parenthesis represent 
arbitrary constants added in order to prevent overlap. 

In contrast, we found little evidence of genetic factors mediating region-specific 

neurodevelopment. The most notable ontological "oddball" in the present study was the 

cerebellum. Developmentally, the cerebellum diverges from the other regions soon after 

neural tube formation; while cerebrum, corpus callosum, and subcortical structures all are 

derived from the embryonic prosencephalon, cerebellar tissue is primarily derived from 

the rombencephalon (Kandel et al., 2000). However, differences in genetic correlations 

between the cerebellum and other structures were not particularly striking, either before 

or after removing the effects of TBV. Similarly, we did not detect weaker genetic 

associations between the thalamus when compared to the telencephalic cerebral volumes 

or the predominantly telencephalic basal ganglia (Fishell, 1997; Kandel et al., 2000; 
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Puelles, 200 la). Though genetically-mediated regional brain patterning certainly plays a 

major and undisputed role in mammalian neurodevelopment, our data would suggest that 

it plays a surprisingly minor role, at least at our level of volumetric measurement, in the 

generation of structure-specific variation within the typical human population. Functional 

relationships, for example, may be more important for defining volumetric correlations 

between the structures measured as basal ganglia, thalamus, and neocortex all are tightly 

linked fbnctionally. 

Though the unique environment had a relatively minor effect on the volumes of the 

structures measured, our relatively large sample allowed us to describe its role on the 

correlations between structures with high precision. We found that structures in spatial 

proximity were significantly and positively correlated via individual-specific 

environmental factors shared between multiple anatomic regions. In other words, the 

environment tends to influence nearby structures similarly. The principle exception was 

that correlations between subcortical nuclei and the lateral ventricles were significantly 

negatively correlated. Given that atrophy of either the basal ganglia or the thalamus can 

be associated with increased lateral ventricular volume in several diseases (Hams et al., 

1999; Gaser, Nenadic, Buchsbaum, Hazlett, & Buchsbaum, 2004; Harris et al., 1999), an 

antagonistic effect between ventricles and subcortical nuclei was not unexpected. 

However, as our calculations represent environmental effects in typically developing 

children, these findings suggest that the correlation is not always pathological. Structural 

modeling identified two statistically significant environmental factors mediating the 

environmental correlations, one representing subcortical structures and one representing 
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the cerebrum and cerebellum. It is possible that common environmental effects reflect 

stochastic processes of major effect occurring early in development, or smaller, more 

continuous processes whose effects are additive. Though the exact nature of these factors 

cannot be deduced, this finding suggests the tantalizing possibility of an internawexternal 

dichotomy for environmental effects. 

Despite the wealth of information obtained from this study, certain limitations must be 

considered. Fundamental to its complex design involving intricate multistep techniques, 

this study inherits all of the limitations and assumptions of its component pieces, namely 

studies of twins, volumetric MRI, and structural equation modeling. The twin design is 

often criticized for its reliance on the equal environment assumption (EEA), which states 

that, on average, MZ and DZ twin pairs do not differ relative to the phenotypes of 

interest. It is now widely believed that much of the concerns regarding the EEA are 

overstated at best (Evans et al., 2002); regardless, it is unlikely that general violations of 

the EEA would substantially impact regional brain volumes (Hulshoff Pol et al., 2002). 

Secondly, the nature of our predominantly Caucasian, pediatric sample may limit 

generalizations to other populations. Aging, in particular, could reduce the strength of 

genetic factors on explaining neurovolumetric variance. Twin studies on geriatric 

populations, however, have shown that heritability for brain volumes remains high even 

into the seventh decade of life (Carmelli et al., 2002b; Carmelli et al., 2002a; Pfefferbaum 

et al., 2004; Pfefferbaum et al., 2000), and it is thus unlikely that patterns of 

neuroanatomic covariance change dramatically over the human lifespan. Thirdly, it is 

possible that a proportion of the large genetic covariance observed between structures is 
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owed to genes responsible for general body size, rather than brain-specific genetic 

factors. Though the present study could not examine the contribution of body size on 

brain volume, Barrk et al. have shown that the genetic correlations between height and 

total gray or white matter are low (. 19 and .16, respectively), suggesting that most of the 

observed genetic correlations between neuroanatomic structures can not be explained by 

body size alone (Baare et al., 2001a). 

Finally, our volumetric measures may be disproportionately sensitive to the proliferative 

and apoptotic components of neurodevelopment. The use of morphometrics, such as 

deformation-based morphometry (Ashburner et al., 1998) rather than volumetric 

approaches might be more able to detect regionalized topological similarities that reflect 

common embryologic origins. 
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"lf it were demonstrated.. .that the lesions that abolish speech consistently occupy one 
determinate convolution, one could hardly fail to admit that this convolution is the seat of 
the faculty of articulated language, and, that once the existence of aJirst localization was 
admitted, the principle of localization by convolutions would be established. " 

--Paul Broca, "Remarks on the Seat of the Faculty of Articulated Language, 
Following an Observation of Amphemia." (1 861). Translated by Christopher 
Green. 
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In this chapter, we examine the interrelationships between eight cerebral lobar volumetric 

measures via both exploratory and confirmatory factor analyses. These analyses suggest 

the presence of strong genetic correlations between cerebral structures, particularly 

between regions of like tissue type or in spatial proximity. Structural modeling estimated 

that most of the variance in all structures is associated with highly correlated lobar latent 

factors, with differences in genetic covariance and heritability driven by a common 

genetic factor that influenced gray and white matter differently. Reanalysis including 

total brain volume as a covariate dramatically reduced the total residual variance and 

disproportionately influenced the additive genetic variance in all regions of interest. 
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Introduction 

The human telencephalon, or cerebrum, is approximately 950 grams at adulthood and 

represents over 80% of total brain weight (Jenkins & Truex, 1963). The cerebrum has 

long been considered the region of the brain most central to higher cognitive functions 

such as thought, memory, and complex sensory processing; functions that are 

associated with particular spatial locations within the cerebral hemispheres (Kandel et 

al., 2000). These facts are so obvious to us today that it may diff~cult to contemplate 

that, prior to the pioneering work of Paul Broca on aphasia in the mid-nineteenth 

century, little was known about the regional specificity within the cerebrum or indeed, 

whether cerebral function was localized at all. Broca's identification of a replicable 

functional center for productive language initiated the ongoing inquiries into the nature 

of functional neuroanatomy. Though debate continues regarding the specific locations 

associated with very specific functions, the overarching geography of the brain has 

been reasonably mapped. As the neuroanatomic "continents" have come into focus, it 

is now well-established that the gross sensory, motoric, and cognitive functions roughly 

correspond to the lobar subdivisions identified by early neuroanatomists (Nolte, 1999). 

In this chapter, attempt to address question of whether individual differences in cerebral 

lobar volumes are generated by genetic factors exhibit regional specificity within the 

cerebrum, or rather are dominated by global or tissue-specific effects. This end, we 
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employ similar methods to those detailed in the previous chapter, as well as a novel, 

confirmatory approach. 

Methods 

The sample was identical to that described in the previous chapter. To briefly restate, 

we modeled MRI data from 127 MZ twin pairs (mean age = 1 1.6, SD = 3.3; age range 

= 5.6-18.7; 74 [58%] male, 53 female), 36 same-sex DZ twin pairs (mean age = 11 .O, 

SD = 3.7; age range = 5.5- 18.2; 18 [60%] male, 12 female), and 158 singletons (mean 

age = 11.3, SD = 3.5; age range = 5.2-18.7; 94 [59%] male, 64 female). Image 

processing of the native images was performed as described in Chapter Four. In these 

multivariate analyses, however, we included only data from cerebral lobar volumes 

(frontal, parietal, temporal, and occipital lobes), for gray and white tissue 

compartments separately. 

Statistical Analyses 

Preliminary inspection of normal quantile plots of the observed variables demonstrated 

that they met the normality assumptions of structural equation modeling with likelihood 

based optimization. Using R (Ihaka & Gentleman, 1996; R Development Core Team, 

2005) we calculated correlations between all volumes for MZ and DZ groups separately. 
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Structural Modeling 

The overall analytic strategy in this chapter largely parallels that of the previous one. 

After importing the data into Mx, we started by constructing a preliminary 8-variable 

triple Cholesky decomposition, the multivariate analog of the classical ACE model, in 

order to calculate relatively unbiased genetic and environmental correlations between the 

observed variables. We also calculated eigenvalues on the decomposed covariance 

matrices to obtain an approximate number of factors required to explain most of the 

observed variance. As in the previous chapter, we then performed an exploratory factor 

analysis using independent pathway models. Scree plots of eigenvalues from the 

Cholesky decomposition suggested that three common factors, at most, would be 

required to explain the covariance matrix for each variance component. Thus, our full 

model included three factors for each of the three variance components, as well as 

structure-specific factors for each variance component. This model is subsequently 

referred to as the 333-ACE PM. 

Unlike the more global analyses in the previous chapter, modeling of cerebral volumes 

also included confirmatory factor analyses (CFA), as the nature of the cerebral measures 

implied a straightforward factor structure. Each of the eight variables measured was 

hypothesized to be influenced by factors related to tissue type (e.g. gray versus white 

matter) or spatial location (e.g lobe). These relationships are visualized in Figure 8.1A, in 

which each observed variable is influenced by two latent factors based on its unique 

combination of region and tissue. Coincidentally, the factor structure of this model is 

identical to the multitrait-multimethod model (MTMM) originally proposed by Campbell 
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and Fiske for the assessment of construct validity (Campbell & Fiske, 1959). Our 

parameterization is similar to the correlated traits, correlated methods version of MTMM 

devised by Joreskog for CFA using structural equation modeling (Joreskog, 197 1). Given 

our twin sample, the MTMM model was expanded in order to decompose observed 

intercerebral covariances into genetic and nongenetic sources (Figure 8.1B). Thus, 

intercerebral relationships due to genetic (A), shared environmental (C), and unique 

environmental (E) could be estimated separately. 

Figure 8.1: Confirmatory factor models Panel A is a sample path diagram of the MTMM model factor 
pattern. Two classes of latent variables are defined, those pertaining to tissue or spatial location. 
Though not shown, each path corresponds to a unique, freely-estimated parameter. The first letter of 
the observed variable name corresponds to spatial location (F=frontal, P=parietal, O=occipital, 
T=temporal) and the second to tissue (G=gray, W=white). Given data from twins and family 
members, the variance can be decomposed into genetic and nongenetic sources (Panel B). For 
simplicity, model from only one twin is shown. 

The MTMM has been extensively used in the social sciences, though the principles of the 

model can be easily generalized (Bechger T.M. & Maris, 2004). Unfortunately, the 

widespread use of MTMM (particularly Joreskog's parameterization) over several 

decades has revealed many limitations of the approach, such as identification problems 

for small numbers of factors, easy misspecification, unidentified submodels due to 
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inadequate local information, and errors in estimation. Some of the problems are specific 

to the use of ordinal data or to assessing psychological constructs, however (Tomas, 

Hontangas, & Oliver, 2000). Additive MTMM models, for example, have been shown to 

fit well for other continuous, normally-distributed variables even though ordinal data 

often does not (Corten et al., 2002). Nevertheless, because of the inherent problems 

associated with the MTMM factor structure, we elected to pursue a cautious approach in 

our own data. Since prior research has demonstrated a trivial role of the shared 

environment on absolute cerebral volumes, we attempted to remove all factors related to 

the shared environment. Because of the risk of unidentification, however, we did not 

attempt more subtle simplifications of the model (e.g. removing tissue factors), but rather 

report maximum likelihood estimates from a less restricted model. 

As with other structural modeling, we employed maximum likelihood (Edwards, 1972). 

Ln these analyses, best-fit models were chosen using AIC (Akaike, 1987), though we also 

performed likelihood ratio chi-squared tests to compare model fits without rewarding 

parsimony. Since preliminary simple linear regressions demonstrated a significant effect 

of age, race, and sex, we used residuals from multiple regressions including age sex and 

race as explanatory variables for all models. 

Covarying for Global Effects 

We then repeated our statistical analyses, but included total brain volume (TBV) as a 

regressor on mean ROI volumes. 
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Results 

Cross-twin, cross-trait correlations are given in Table 8.1. Within individuals, 

correlations between cerebral structures were high. The highest correlations, 

approximately .80-.95, were between frontal gray matter and both temporal and parietal 

gray, as well as between frontal white and parietal and temporal white matter. The lowest 

correlations, approximately .30-.60, were between occipital structures and structures of 

different tissue type in different lobes. In general, variables that differed only by one 

qualitative trait were more correlated than if they differed by both tissue type and spatial 

location. For example, frontal gray matter was highly correlated with frontal white, 

temporal, gray, and parietal gray, but to a lesser extent to parietal and temporal white. 

The most prominent exception to this observation was a high correlation between 

temporal gray and parietal white matter. 

Similar to our prior univariate studies on a slightly smaller sample, the within-region, 

cross twin correlations were substantially higher in MZ twins relative to DZ twins for 

cerebral volumes. The differences between groups were strongest for white matter 

structures, though these descriptive statistics suggest that both gray and white matter are 

highly heritable. Similarly, cross-twin, cross-structure correlations tended to be 

substantially higher in the MZ group, suggesting that most of the covariance between 

variables is genetically-mediated. 
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Table 8.1: Within and cross twin correlations between cerebral volumes for MZ (below diagonal) and DZ (above 
diagonal) groups. Cross twin correlations are shown in shaded boxes; cross-twin, within trait correlations are in 
boldface. 
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Genetic and Environmental Correlations 

Genetic and unique environmental correlations are given in Table 8.2; the covariances 

attributable to the shared environment were substantially smaller, and the corresponding 

correlation matrix therefore is not shown. Maximum likelihood estimates for the genetic 

correlations were quite high, ranging from .56 to .94. As with the within-individual 

phenotypic correlations, structures of like tissue type or location tended to be slightly 

more correlated via genetic factors than those without these similarities. In contrast, 

unique environmental correlations were, in general, lower and more variable, ranging 

fi-om -.22 to .86. By far, the strongest correlations were between gray matter structures 

excepting the occipital lobe (>.80). Unique environmental correlations between regions 

of unlike tissue composition tended to be small or even negative. 

Table 8.2 Genetic and unique environmental correlations between cerebral substructures, with 
95% confidence intervals in parenthesis. Genetic correlations are given below the diagonal. 
Cross-tissue, within-lobe correlations are in boldface. 
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Exploratory Factor Analysis 

The full 3-3-3-ACE P M  fit the data significantly worse than the Cholesky decomposition 

(xi, = 37.35, p-value=.0153) but was preferred by fit statistics favoring parsimony (AIC 

= -4.65, A BIC = -40.80). Attempts to simplify this model resulted in the elimination of 

one shared environmental common factor and the shared environmental specific factors 

with little deterioration in model fit compared to the full P M  (compared to 3-3-3-ACE: 

= 3.10, p-value = .99, AIC = -24.90). Maximum likelihood parameter estimates from 

this best-fit model (a 3-2-3:AE IPM) are shown in Table 8.3. 

Table 8.3 Standardized, varimax rotated factor loadings for the best fit exploratory model (3-2- 
3-AE). 

ROI A1 A2 A3 
FG 0.57 0.37 0.28 

For all structures, the largest factor loadings were on genetic factors. The first common 

genetic factor loaded at least moderately on all structures, but gray structures in 

particular. The second genetic factor clearly loaded preferentially on white matter 

structures, while the third had high loadings primarily on the posterior cerebrum 

(occipital and parietal lobes), irrespective of tissue type. The shared environmental factor 

loadings were substantially smaller than the genetic loadings. The first factor primarily 



www.manaraa.com

loaded on frontal, occipital, and temporal gray, with the second on the occipital lobe and 

temporal white matter. The three unique environmental common factors were clearly 

identifiable as a gray matter, white matter, and an occipital lobe factor, respectively. 

Confirmatory Factor Analysis 

The full ACE MTMM model did not fit the data significantly worse than the more 

parameterized Cholesky decomposition (Cholesky decomposition: -2LL 20882.5 8, 1 80 

parameters; MTMM Full model -2LL 20893.70, 165 parameters, = 1 1.20, p- 

value=.74, AIC = -1 8.88). Similarly, the removal of shared environmental factors had 

little effect on the fit of the model (compared to Full Model: ~ f ,  = 24.19, p-value=.80, 

AIC= -37.8 1) and had a substantially better fit than the best-fit exploratory model. As the 

correlation between the gray and white matter factors was near unity for both genetic and 

environmental sources of variance, these could be fixed to one without a significant effect 

on model fit or parameter estimates (compared to Full model: -2LL 20919.36, 

xt3=25.66, p-value=.8192, AIC=-40.34). Fixing these values does, however, simplify 

presentation of the complex model since the two tissue factors can be represented as a 

single, common factor. Though many correlations between the lobar factors were high, 

these could not be fixed to unity without substantial deterioration in model fit for both 

genetic (x:,= 84.47, p-value < .0001, AIC = 10.47) or environmental (x&= 71.37, p- 

value < .0006, AIC = -2.634) variance components. 
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Table 8.3: Standardized maximum likelihood estimates for the best fit MTMM model. Columns 
represent factors contributing to either genetic (A) or unique environmental (E) variance. Negative 
estimates are shown in red. Columns with subscript c are common factors, those with subscript 
s are specific to a single structure, and those with the lobe subscript represent factors that are 
lobe-specific, but correlated with other lobar factors. These correlations are shown in Figure 8.2. 

Frontal Gray .25 .36 .81 .36 .09 .01 .74 [.63 .81] .26 [.I9 .37] 

Frontal White -A1 -.I6 .80 .26 .22 .21 .86 [.81 .90] .I4 [.I0 .I91 

Occipital Gray .I3 .I6 .74 .55 .34 .O1 .68 [.55 ,761 .32 [.24 .45] 

Occipital White -.I8 -91 .79 .29 .23 .32 .71 [.61 .79] .29 1.21 .39] 

Parietal Gray .21 .33 .79 .34 .30 .75[.64.83] .25[.17.36] 

Parietal White -.43 -18 .81 .32 .I5 .04 .86 [.81 ,901 .I4 [.I0 .I91 

Temporal Gray .I7 .37 .81 .29 .26 .20 .74 [.64 .82] .26 [.I8 .36] 

Temporal White -.37 -.25 .79 .I6 .29 .27 .84[.77.89] .16[.11.23] 

The standardized maximum likelihood estimates from this model are presented both in 

Table 8.3 and Figure 8.3. By far, most of the variance in all cerebral structures was 

attributable to genetic factors common to lobes. As shown in Figure 8.3, these factors, in 

turn, were highly correlated. The subtle differences in phenotypic correlations between 

gray and white matter could be explained by the second genetic factor which had modest 

loadings, but with negative loadings on white matter structures. Though loadings were 

substantially lower, a very similar pattern emerged for environmental variance. The 

principal differences were that the relative contributions and tissue and lobar factors to 

structure variances were more similar for the unique environmental factors, high loadings 

on the occipital lobe latent factor, and less homogenous correlations between lobar 

factors. 
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Figure 8.2: Maximum likelihood parameter estimates for the  best-fit MTMM model. For simplicity, genetic 
(panel A) and unique environmental (panel B) factor loadings are shown separately. 

Models Including Global Covariates 

The Cholesky decomposition allowing for linear effects of total brain volume on mean 

cerebral volumes fit the data substantially (-2LL=19102.57) better than the model without 

this regressor (-2LL = 20882.58). After adding the covariate, the total residual variance 

decreased precipitously for all regions (Figure 8.4). Without a global covariate, additive 

genetic variance always was the dominant variance component; the use of a global 

covariate had a disproportionately greater influence on the genetic variance compared to 

the environmental variance components. Thus, after controlling for global effects, 

additive genetic factors became relatively less important in explaining the residual 

variance. 
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Figure 8.3. Residual variance for variance components with and without a global covariate, organized 
by cerebral region of interest. Variance components (A,C, and E) are labeled and colored in red, green, 
and blue, respectively. Total variance (V) is shown as a solid black line. 
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Table 8.4 provides correlations for individual variance components from this model. 

Unlike the strong positive genetic correlations observed for absolute volumes, genetic 

correlations between TBV-covaried structures varied widely and were often negative. For 

all variance components, negative correlations tended to be between gray and white 

matter structures. In effect, controlling for TBV removed a sizable, positive partial 

correlation between all structures. 
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Table 8.4: Genetic, 
global covariate on 
boldface. 

shared environmental, and unique environmental correlations after use of a 
mean volumes for all structures. Within-lobe correlations are shown in 

GENETIC 

1 .oo 
0.34 1 .OO 

0.46 -0.21 1 .OO 

0.26 0.34 -0.22 1 .OO 

-0.62 -0.56 0.19 -0.56 1 .OO 

-0.56 0.26 -0.65 0.21 -0.25 1 .OO 

SHARED ENVIRONMENTAL 

1 .oo 
0.40 1 .OO 

-0.07 0.41 1 .OO 

-0.47 0.60 0.38 1.00 

0.81 -0.12 -0.53 -0.76 1 .OO 

-0.13 0.51 -0.36 0.63 -0.22 1 .OO 

LlNlQUE ENVIRONMENTAL 

1 .oo 
0.37 1 .OO 

0.12 -0.51 1 .OO 

-0.02 0.56 -0.43 1 .OO 

-0.01 -0.59 0.52 -0.63 1 .OO 

-0.13 0.44 -0.64 0.62 -0.58 1 .OO 
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Attempts to model the relationships between TBV-covaried structures were only 

marginally successful. The 333-IPM fit worse than Cholesky decomposition based on x2 

but not by AIC (x:, = 4 1.53, p-value = ,0048, AIC = -0.47). As with the initial analyses 

on absolute volumes, the 323-AE TPM was found to be the most parsimonious model 

after a stepwise removal of latent factors (compared to Cholesky: ~ i z 4 4 . 4 5 ,  p-value = 

.13, AIC = -25.55; compared to 333-IPM: ~ ;=2 .91 ,  p-value = .99, AIC = -25.09). 

Table 8.5 reports the parameter estimates from this model, which were substantially more 

difficult to interpret then those on absolute volumes. Genetic effects were no longer 

predominant. Additionally, strong negative factor loadings were a prominent feature of 

the TBV-covaried factor models. The common factors still demonstrated evidence of the 

graylwhite dichotomy, but these effects were somewhat obscured by loadings that did not 

fit the pattern. For example, the most prominent loadings for the third genetic factor were 

a positive loading on occipital gray matter, and a negative loading on temporal gray; 

these structures were uncorrelated via other common genetic factors. 

Table 8.5: Varimax-rotated, standardized maximum likelihood parameter estimates of best-fit 
exploratory model after covarying for total cerebral volume. 

ROI 

FG 

FW 

OG 

ow 
PG 

PW 

TG 

TW 
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Confirmatory analyses were somewhat more successful. The Full MTMM did not fit 

significantly worse than Cholesky decomposition (-2LL~19 1 19.070, = 16.50, p-value 

= .42, AIC = -16.50). Parameter estimates from the best-fit MTMM submodel (-2LL 

19149.989; relative to Cholesky &= 47.42, p-value = -79, AIC = -64.581; relative to 

full MTMM xi= 30.92, p-value = .85, AIC = -49.01) are shown in Figure 8.2. The most 

striking differences compared to the MTMM without a global covariate were 1) the 

substantial decrease in variance explained by genetic lobar factors, 2) a reversal in the 

correlations between these factors fiom strongly positive to negative, and 3) a relative 

increase in the importance of the path coefficients of the common genetic factor with a 

similar pattern of positive and negative values. 

Figure 8.4: Maximum likelihood parameter estimates for the best-fit MTMM model after covarying for 
total brain volume. For simplicity, genetic (panel A) and unique environmental (panel B) factor loadings 
are shown separately. 
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Discussion 

Similar to the results reported in the previous chapter on more ontogenetically diverse 

regions of interest, a more focused statistical genetic analysis on cerebral volumes 

suggests that genetic factors play the dominant role in the generation of covariance 

between observed structures. Because of the availability of segmentation data in the 

cerebrum, however, we were able to detect subtle differences in the relationships between 

gray and white matter. Genetic correlation matrices, EFA, and CFA all suggest that 

genetically-mediated covariance is greater between brain regions of similar tissue type. 

Since segmentation data from the rest of the brain are not available, it is unclear whether 

these relationships are unique to the cerebrum. 

EFA and CFA models differ somewhat in how best to model cerebral relationships. In the 

best-fit EFA model, a gray-dominant and a white-dominant common genetic factor were 

present, with positive, moderate loadings on non-dominant structures (e.g. temporal white 

on the "gray" factor) for both factors. In the best fit CFA model, in contrast, genetic 

variance was almost entirely mediated via the lobar factor structure, with subtle gray- 

white differences modulated by a common factor. While in many ways the results from 

these two models are alternative perspectives of the same reality, it is noteworthy that the 

CFA model fit far better than the best fit EFA models. Thus, subtle inter-regional lobar 

differences appear to be an important determinant to both genetic and environmental 

covariance. The presence of the correlated lobar structure of the MTMM allows for all 

regions to be highly correlated via this factor structure, but not uniformly so as would be 
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the case with a single common factor; correlations between genetically-mediated latent 

lobar factors were all very high but not perfect. 

As the cerebrum is the largest structure in the brain, it was not surprising that its eight 

major subcomponents were highly influenced by total brain volume. It is interesting, 

however, that the use of the TBV disproportionately decreased the additive genetic 

variance component with respect to the environmental components, reducing the 

heritability of all regions of interest substantially. This effect suggests strong genetic 

correlations between TBV and the cerebral ROIs in this study. Ln other words, as 

observed in the previous chapter, a strong single genetic factor or several highly 

correlated factors drives covariation between the observed variables. When the effects of 

this factor are largely removed by adding the TVB covariate, the positive partial 

correlations it generates also disappear, producing more complex interrelationships 

within the residual variance. The MTMM factor structure still fit well after the covariate 

was added, but the importance of the lobar factors relative to a common "tissue" factor 

was reversed and the interlobar correlations flipped to negative values. 

Though a few studies have reported on cerebral lobar heritability (Carmelli et al., 2002b; 

Geschwind et al., 2002; Wallace & Giedd, 2004), the present analyses are unfortunately 

the only extant information on intralobar relationships. The prior observation by Ban6 

et a1 of a .68 genetic correlation between total brain gray and white matter is, broadly 

speaking, consistent with the more detailed analyses reported here (Baare et al., 2001a). 
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IDENTIFICATION OF GENETICALLY-MEDIATED CORTICAL NETWORKS 

"Our 20,000-25,000 genes can be compared to the residents of an average-sized town, 
each with names and addresses, all speaking a language for which the essential 
grammatical elements are understood. The brain, on the other hand, still evokes celestial 
metaphors, with its vast numbers of neurons compounded by the 10,000-fold complexity 
of the interconnections between them." 

--Jordan P .  Amadio and Christopher A. Walsh. "Brain Evolution and the Human 
Genome." Cell. (126), 2006 

SCHMITT JE, LENROOT RK, WALLACE G, ORDAZ SE, LERCH JP, EVANS AC, KENDLER KS, NEALE MC, 
GIEDD JN. IDENTIFICATION OF GENETICALLY-MEDIATED CORTICAL NETWORKS. CEREBRAL CORTEX. UNDER 
REVISION. 
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ABSTRGCT 

Despite great interest in the role of genes in driving individual differences in cortical 

patterning, very little information on the topic is available for typically-developing 

individuals. We acquired high resolution anatomic MRI images on a large pediatric 

sample of twins, siblings of twins, and singleton families. We subsequently modeled 

familial relationships to obtain estimates of the additive genetic correlations between 54 

gyral-level measures of cortical thickness. Both cluster and principal components 

analysis revealed several factors underlying the associations. The most dominant factor 

influenced the variability of non-orbital frontal lobe structures, dorsal parietal gyri, and 

somatosensory cortex. Other networks included two distinct factors driving associations 

between occipital lobe structures, and a factor influencing variability tempro-insular 

cortex. These findings are largely concordant with other multivariate studies of brain 

structure, the twin literature, and current understanding on the role of genes in cortical 

neurodevelopment. 
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Introduction 

Though the role of genetics in brain patterning is of great scientific interest, many of the 

most basic questions in the field remain unanswered. That proper gene expression is 

critical for proper brain development has become self evident; both the large animal 

literature as well as structural and functional studies of neurogenetic syndromes provide 

overwhelming support of the obvious-genes help construct the brain, maintain and 

develop it through life, and perform its perceptual, computational, and motor activities 

(Kandel et al., 2000). The role of genetics on the tremendous intra-species variability in 

most neurobiological phenotypes, however, is substantially less well understood. For 

example, it still is unclear whether polymorphisms in the genes responsible for 

neuropathology also play a role in generating population-wide individual differences in 

neurobiological phenotypes, nor is it apparent how different genetic factors 

simultaneously influence multiple neurobiological measures during typical development. 

Studies are only beginning to map out the relative strength of genetic effects on different 

aspects of human neuroanatomy. The advent of non-invasive techniques such as magnetic 

MRI in combination with twin and family-based methodologies has enabled the 

estimation of the fraction of population variability in the size of brain structures 

attributable to genetic effects (i-e. the heritability). In general, the heritability of brain 

volumes is high; approximately -80 for both total brain volume and cerebral cortex (Baare 

et al., 2001a; Geschwind et al., 2002; Wallace et al., 2004). Information on the 

heritability of smaller structures is more limited as fewer studies have been performed; 
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the most comprehensive parcellation to date by Wright et al. reported substantial 

heterogenetity in heritability of regions of interest (ROIs) based on Brodrnann areas in a 

sample of 10 monozygotic (MZ) and 10 dizygotic (DZ) twin pairs. This study found the 

strongest genetic effects (heritabilities > .50) in pre- and postcentral gyrus, frontal and 

orbitofrontal regions, supramarginal gyrus, superior temporal gyrus, temporal pole, and 

cingulate gyrus, though only three out of ninety-two measured regions had statistically 

significant genetic effects (Wright et al., 2002). Additionally, two voxel-level studies 

have suggested that genetic effects are stronger in frontal areas and language centers, 

both for measures of gray matter density and cortical thickness (Lenroot et al., 2007; 

Thompson et al., 2001). 

Multivariate studies examining how genetic effects influence multiple regions are more 

uncommon (Baare et al., 2001a; Pennington et al., 2000; Schmitt et al., 2006; Wright et 

al., 2002), and to date only two have parcellated the cerebrum with high resolution. The 

present study represents an extension to the important yet sparse previous work on the 

genetic contributions to variability in high-resolution neuroanatomic structure. Below, we 

describe analyses of gyral-level structures measured in a large sample of twins and family 

members using similar statistical to prior studies, but with substantially enhanced 

statistical power, and an alternative endophenotype, cortical thickness. 
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Methods 

Subjects 

The analyses reported in this chapter are based on MRI from a sample of 600 children in 

total (mean age 1 1.1, SD 3.4, range 5.4- 1 8.7), including 214 MZ and 94 DZ twins, 64 

singleton siblings of twins (1-2 per family), 1 16 members of entirely singleton families 

(2-5 members per family), and 112 unrelated singletons. The distribution of subjects and 

basic demographic information are given in Table 5.1. Findings on the heritability of 

voxel level cortical thickness measures have been reported previously with this sample 

(Lenroot et al., 2007). 

Image Processing 

A probabilistic atlas was used to assign cortical points to specific neuroanatomic regions 

(Collins et al., 1999). Mean CT was calculated for each of 54 cortical subregions (Table 

9. I), which roughly corresponded to cerebra1 gyri and were based on the sulcal 

definitions of Ono (Ono, Kubik, & Abernathey, 1990). 
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Table 9.1: Cortical regions of interest in the present study and abbreviations used in subsequent 
Tables and Figures. 

Structure Name 
Superior Frontal Gyrus 
~ i d d l e  Frontal ~ ~ r " s  
lnferior Frontal Gyrus 
Precentral Gyrus 
Lateral Orbitofrontal Gyrus 
Medial Orbitofrontal Gyrus 
Cingulate Cortex 
Medial Frontal Gyrus 
Superior Parietal Gyrus 
Supramarginal Gyrus 
Angular Gyrus 
Precuneus 
Postcentral Gyrus 
Superior Temporal Gyrus 
Middle Temporal Gyrus 
lnferior Temporal Gyrus 
Uncus 
Medial Occipitotemporal Gyrus 
Lateral Occipitotemporal Gyrus 
Parahippocampal Gyrus 
Occipital Pole 
Superior Occipital Gyrus 
Middle Occipital Gyrus 
lnferior Occipital Gyrus 
Cuneus 
Lingual Gyrus 
lnsula 

Left Abbreviation 
SFG-L 
MFG-L 
IFG-L 
PreCG-L 
LFOrbG-L 
MFOrbG-L 
Cingulate-L 
MedialFG-L 
SupParGy-L 
SMG-L 
AngularGy-L 
Precuneus-L 
PostCenGy-L 
STG-L 
MTG-L 
ITG-L 
Uncus-L 
MediooccipitemporalGy-L 
LateraloccipitemporaIGy-L 
ParahippocampalGy-L 
OccipitalPole-L 
SupOccGy-L 
MidOccGy-L 
InfOccGy-L 
Cuneus-L 
LingualGy-L 
Insula-L 

Right Abbreviation 
SFG-R 
MFG-R 
IFG-R 
PreCG-R 
LFOrbG-R 
MFOrbG-R 
Cingulate-R 
MedialFG-R 
SupParGy-R 
SMG-R 
AngularGy-R 
Precuneus-R 
PostCenGy-R 
STG-R 
MTG-R 
ITG-R 
Uncus-R 
MediooccipitemporalGy-R 
LateraloccipitemporaIGy-R 
ParahippocampalGy-R 
OccipitalPole-R 
SupOccGy-R 
MidOccGy-R 
InfOccGy-R 
Cuneus-R 
LingualGy-R 
Insula-R 

Statistical Analysis 

The resultant data were iteratively passed from the statistical programming environment 

R (Ihaka et al., 1996; R Development Core Team, 2005) to Mx (Neale et al., 2002), a 

matrix-based structural equation modeling package (Neale et al., 1992). Univariate 

variance decomposition was accomplished using an extended twin design o f  the classical 

ACE model, which increases the statistical power to detect genetic effects on phenotypes 

(Posthuma et al., 2000b). Models included a simultaneous means regression to  adjust for 

sex, nonlinear age effects, and interactions between age and sex. In these models, the 
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differences in the correlation between MZ twins, DZ twins, and related singletons 

enabled the parsing of the observed variance in the observed cortical thickness measured 

into variance of genetic (a2), non genetic familial (c2), and unique environmental (e2) 

origin. Optimization was performed using maximum likelihood (ML) (Edwards, 1972). 

We also we tested for the significance of both genetic and shared environmental effects 

for each neuroanatomic region via likelihood ratio X2. 

Figure 9.1: Example of a path diagram describing the bivariate Cholesky decomposition used to 
estimate genetic correlations between regions of interest (ROls). The variance in observed 
variables (denoted as rectangles) are modeled to be mediated by latent additive genetic (A.), 
shared environmental (C.) or unique environmental (E.) sources of variance (circles) with latent 
variances standardized to unity. The model is identified since the correlation between genetic 
factors (a) is perfect in MZ twins, but W between DZ twins and singleton siblings. The expected 
covariances of this model produce nine simultaneous equations from which the values of the nine 
free parameters (a., c., e.) can be estimated. In this example, two related family members (S1 
and S2) are shown. For families with more than two individuals, this model is easily expanded, 
with families of size k generating (2k)2 informative variancelcovariance relationships. Unrelated 
individuals provide useful information for the estimation of ROI variances as well as the within- 
person phenotypic covariance. 
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Multivariate Modeling 

In order to analyze the pattern of genetic relationships between neuroanatomic structures, 

we employed a modified version of the multistep multivariate analyses reported by 

Wright et al. (Wright et al., 2002). First, we constructed extended twin versions of 

bivariate ACE Cholesky decompositions for each pair of neuroanatomic variables (Figure 

9.1). In addition to adjusting for age and sex, mean global CT was included as a 

regressor. The genetic correlation between any two structures was then calculated by 

standardizing their genetic covariance matrix. The genetic correlation is defined as; 

where A,,, is the genetic covariance between structures x and y, and A, and A, represent 

the heritability of x and y (Falconer et al., 1996). The sequential bivariate analyses of 

2862 painvise models populated a 54 x 54 genetic correlation matrix; despite the 

redundancy, calculations both above and below the diagonal were performed in order to 

ensure that the optimizer had converged to the proper solution. The correlation matrix 

was visualized using the heatmap.2 function in R (from the gplots package), which also 

performed a preliminary cluster analysis using Euclidian distances (Hastie, Tibshirani, & 

Friedman, 2001). 

We then completed a principal components analyses (PCA) on the genetic correlation 

matrix and extracted the factors with the six highest eigenvalues. PCA is a linear 
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transformation that attempts to reduce the dimensionality of the data structure by 

identifying uncorrelated factors that account for a disproportionate amount of the total 

variance within the observed measures (Hastie et al., 2001; Norman & Streiner, 2000); in 

essence PCA rotates the axes of measurement to optimally align with the dominant axes 

of the observed data, with the constraint that all components lie orthogonal to one 

another. To facilitate interpretation of the factor structure, varimax rotation was 

subsequently applied (Kaiser, 1958). These adjusted factors represent the predominant 

patterns of relationships between the neuroanatomic regions that are caused by additive 

genetic factors. To determine the multivariate relationships between absolute measures 

of cortical thickness, we repeated these analyses without a global covariate. 

Graph Theory 

As an alternate method to characterize relationships between gyral regions, we 

constructed simple graph theoretical models using Bioconductor (Carey, Gentry, Whalen, 

& Gentleman, 2005), a collection of R packages for the analysis of genomic data. Graph 

theory is a branch of discrete mathematics for the analysis of complex networks, with 

applications in telecommunications, social networking, bioinformatics, and molecular 

biology, among others. Recently, there has been increasing interest in using graph theory 

in systems biological analyses of the most complex network known, i.e. the brain, with 

applications ranging from examining neuronal circuitry to understanding structural and 

functional connectivity between large neuroanatomic regions (Sporns, Chialvo, Kaiser, & 

Hilgetag, 2004). 
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The two fundamental components of these models are nodes, which represent units in a 

large system (e.g. computers, proteins, neurons, or gyri), and edges, which represent the 

connections between them. To identify important edges within our data, we ran AE 

Cholesky decompositions and compared the fit of this model to the submodel in which 

the path allowing for genetic covariance (a2 in Figure 1) was removed. Statistically 

significant positive correlations at an a = .05 were identified as undirected edges. From 

this graph, we calculated statistics that evaluate properties of the network, namely the 

characteristic path length (L) and the clustering coefficient (C) (Watts & Strogatz, 1998). 

The average path length simply refers to the average shortest distance between a node 

and other nodes in the system; the clustering coefficient of a node is the average number 

of edges connecting a node's neighbors, relative to the total number possible. Values of L 

and C for the system as a whole were calculated by taking mean values for all nodes in 

the graph (Watts et al., 1998). We compared these calculations to those from 1000 

simulated random networks, each with the same number of nodes and edges as the real 

data. In the simulations, for each of i edges, two nodes were identified by sampling from 

a pool of 54 nodes (with replacement) with uniform probability, with the constraints that 

an edge could not connect a node to itself, nor could edges be redundant. Visualization 

of graphs was performed using modifications of functions in the GeneTS package 

(Schafer & Strirnrner, 2005). 
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Results 

Variance component analyses 

Variance decomposition demonstrated substantial heterogeneity in heritability between 

cortical regions. Table 9.2 presents both parameter estimates and tests of the statistical 

significance of genetic and shared environmental effects to the variation in each region. 

In general, genetic effects were strongest in frontal lobes, with temporal, parietal, and 

occipital variance progressively less influenced by genes. The specific regions with the 

highest genetically-mediated individual differences included the superior and inferior 

frontal gyri, the pre- and postcentral gyri, left medial frontal gyrus, left supramarginal 

gyrus, the left inferior temporal gyrus, and the left occipital pole. Global trends can be 

seen in Figure 9.2, which projects point estimates on the brain surface. In contrast to 

genetic factors, the familial environment appeared to have virtually no role in the 

observed variability in CT. While the genetic effects on most of structures were 

statistically significant at an a of .05, no shared environmental factors were significant at 

this level, and the c2 maximum likelihood estimate for nearly every structure was 

zero. 
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Table 9.2: Maximum likelihood parameter estimates and p-values from hypothesis testing of univariate ACE models.95% confidence 
intervals for point estimates are in parentheses. P-values test the hypotheses of no genetic (A), shared environmental (C), or familial 
(A&C) effects on phenotypic variance. Statistically significant effects (at an a=.05) are shown in red. 

RO I 

SFG-R 

SFG-L 

MFG-R 

MFG-L 

IFG-R 

IFG-L 

PreCG-R 

PreCG-L 

LFOrbG-R 

LFOrbG-L 

MForbG-R 

MForbG-L 

Cingulate-R 

Cingulate-L 

MedialFG-R 

MedialFG-L 

SupParGy-R 

SupParGy-L 

SMG-R 

SMG-L 

Variance Components 

c2 

0.00 (0.00 0.15) 

0.00 (0.00 0.17) 

0.00 (0.00 0.10) 

0.00 (0.00 0.21) 

0.00 (0.00 0.09) 

0.00 (0.00 0.19) 

0.00 (0.00 0.13) 

0.00 (0.00 0.15) 

0.00 (0.00 0.15) 

0.00 (0.00 0.19) 

0.00 (0.00 0.17) 

0.00 (0.00 0.21) 

0.00 (0.00 0.09) 

0.00 (0.00 0.10) 

0.00 (0.00 0.17) 

0.00 (0.00 0.13) 

0.00 (0.00 0.13) 

0.00 (0.00 0.15) 

0.00 (0.00 0.28) 

0.00 (0.00 0.21) 

Hypothesis Testing 

A C A & C  

1.000 brn 
2 1 .ooo Rp 
2 1.000 #J9p 

i 1.000 5- 

1.000 
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RO I 

AngularGy-R 

AngularGy-L 

Precuneus-R 

Precuneus-L 

PostCenGy-R 

PostCenGy-L 

STG-R 

STG-L 

MTG-R 

MTG-L 

ITG-R 

ITG-L 

Uncus-R 

Uncus-L 

MediooccipitemporalGy-R 

Medioocdpbmpml@-L 

LateralOccipitotrmporalGy-R 

LaleralOcd-GY-L 

ParahippocampalGy-R 

Parahippac9mpalGy-L 

OccipitalPole-R 

OcoipltalPole-L 

SupOccGy-R 
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Figure 9.2: Visualization of variance components analysis for ffiy-four measures of cortical thickness. 
The maximum likelihood estimates for heritability (a2) and the unique environmental variance (e2) 
reported in Table 1 are rendered onto the brain surface. Since the estimates for familial variance 
approach zero for most structures, these are not shown. 
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Multivariate Relationships 

A color map of the genetic correlation matrix is shown in Figure 9.3. Genetic correlations 

between the measured cortical structures ranged fi-om -.67 to .76. Gyri in contralateral 

regions were more likely to be positively correlated via genetic factors, as were regions in 

spatial proximity though this observation was far from absolute. The neuroanatomic 

relationships are apparent in the dendrogram that accompanies Figure 3 (reproduced on 
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Figure 9.3: Heatmap of the genetic correlations between measures of cortical thickness, 
reordered by the results from hierarchal cluster analysis (dendrogram reproduced on both 
margins). 

both axes). Approximately five blocks of related structures emerged; temporal/insular/left 

lateral orbitofrontal, cingulate/orbitofrontal, occipital/occipitotemporal, frontal (excluding 
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orbitofiontal gyri), and parietal including precuneus and primary somatosensory cortex 

bilaterally. Positive genetic correlations were largely clustered within these blocks, but 

there also were several strong correlations, such as between superiorlmiddle fiontal 

structures and primary somatosensory cortex. Structures on the inferior of the brain were 

dispersed between the parietal and occipital blocks and had correlational patterns similar 

to those of the occipitotemporal structures. Other prominent between-block correlations 

included between the fiontal block and superior parietal lobe, fiontal lobe and cingulate 

cortices, and between orbitofiontal, cingulate, and middlelinferior temporal structures. 

The first six components of the PCA explained over half (58%) of the total genetic 

variance in all 54 measures, with each factor explaining about 10% of the observed 

variability. The component loadings are projected onto the brain in Figure 9.4, which 

visualizes the most important factors for explaining genetically-mediated individual 

differences in cortical thickness. The first and most prominent component strongly tapped 

fiontal and superior parietal structures, including superior, middle, and medial frontal 

gyrus, pre- and postcentral gyrus, right superior frontal gyrus, and left precuneus. Several 

temporal structures and the inferior surface of the cortex, including the left lateral 

orbitofiontal gyrus, had negative factor loadings, suggesting a relationship between these 

structures via this factor. The second factor loaded predominantly on the occipital lobes, 

with high negative loadings in left fronto-orbital gyrus and cingulate gyrus bilateral 
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Figure 9.4: Results of PCA. Panel A is a barplot of factor loadings on the 54 measured regions, 
with columns representing the six most important components in explaining the total genetic 
variability in cortical thickness after adjusting for global effects. Since this PCA was performed on 
a (genetic) correlation matrix, factor loadings can be interpreted as the correlation between an 
ROI and a (genetic) component. Division lines are given for orientation purposes only. Panel B is 
an alternate representation of the same information projected on the brain surface. 
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The remaining factors showed similar patterns, with high loadings on structures from 

lobar subregions, and prominent negative loadings on distal structures such as 

orbitofrontal gyri, cingulate, or inferior temporal lobe. The third factor could be identified 

as mediating genetic relationships between cuneus, lingual gyrus, mediooccipitotempora1 

gyrus, and right superior parietal gyrus, while the fourth strongly demonstrated 

associations within the frontal lobe; unlike the fronto-parietal factor described above, this 

factor included the inferior frontal gyri but neither the superior parietal lobes nor primary 

somatosensory cortex. The final two factors represented genetic associations between 

superior temporal gyms and insula bilaterally (with modest negative loadings in 

orbitofrontal cortex and left cingulate), and inferior parietal lobe, with a stronger 

influence on the left hemisphere. 

Absolute measures 

When we repeated the analysis without a global covariate, all structures had strong 

positive correlations (Figure 9.5A). PCA identified a single genetic factor that could 

explain over 60% of genetic variability (Figure 9.5B), with the second factor explaining 

more than ten times less of the total variance. Most structures in the brain showed high 

loadings on this single factor. 
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Figure 9.5: Multivariate findings when measures are analyzed without global adjustment. Panel A is the heatmap of genetic correlations between 
absolute measures of cortical thickness, while Panel B plots the factor loadings from the largest principal component obtained via PCA. 
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Graph Theory 

Using statistically significant genetic correlations as a threshold for edge placement, we 

identified 185 edges connecting the 54 neuroanatomic structures. Table 9.3 summarizes 

statistics by region. The distribution of edges was not uniform; regions with the highest 

number of edges (i.e. the degree of the node) were the superior and middle frontal gyri, 

pre- and postcentral gyri, superior parietal gyms, and the occipital pole. The clustering 

coefficient and characteristic path length were similarly heterogeneous for different 

structures, with ranges from 0.17-1.0 and 2.3-3.7, respectively. The characteristic path 

length for the entire observed system was 2.8, which was marginally (1.2 times) larger 

than that in simulation of random networks (L=2.3, SD=.03). In contrast, the clustering 

coefficient for the entire system was .50,4.2 times higher the average value for the 

simulated networks (C = .12, SD=.03). Figure 9.6A displays this graphically. The tight 

local clustering of the data relative to random networks is apparent in Figure 9.6B-C; in 

the observed data, most edges from a given node connect to other nodes nearby in the 

network, with occasional connections to distant nodes. Like prior analyses, the graph 

theoretical approach found strong relationships within fionto-parietal and occipital 

subnetworks (Figure 9.6D). 



www.manaraa.com

Structure 
SFG-R 
SFG-L 
MFG-R 
MFG-L 
IFG-R 
IFG-L 
PreCG-R 
PreCG-L 
LFOrbG-R 
LFOrbGL 
MForbG-R 
MForbG-L 
Cingulate-R 
Cingulate-L 
MedialFG-R 
MedialFGL 
SupParGy-R 
SupParGy-L 
SMG-R 
SMG-L 
AngularGy-R 
AngularGy-L 
Precuneus-R 
Pr6wtwws-L 
PostCenGy-R 
PostCenGy-L 
STG-R 
STG-L 
MTG-R 
MTG-L 

Table 9.3: Network statistics for gyral subregions 

Degree Clustering Coefficient Average Path Length 
12 0.62 2.74 
11 0.69 2.78 
7 0.52 2.85 
10 0.38 2-45 
6 0.47 3.19 
9 0.22 263 
9 0.83 2.81 
12 0.58 2.63 
3 0.33 3.09 
5 0.50 2.56 
3 0 67 3.30 
6 0.40 2.70 
5 0.20 2.63 
8 0.36 2.65 
1 1  0 51 2.57 
7 0.57 2.98 
12 0 59 2.44 
11 0.64 2.52 
7 0.52 2.74 
5 0.50 2.83 
6 0.60 2.63 
6 0.67 2.83 
3 0.33 3.04 
1 3.65 %BM 
12 0.61 2.59 
12 0.50 
3 0.67 
Q . . >a- --,-.- 0.47 -.. . ,:-.A**+ 

ITG-R 3 0.33 
ITG-L 7 0.33 
Uncus-R 3 0.33 
Uncus-L 4 0.17 
MediooccipitemporalGy-R 5 0.30 
MediooccipitemporalGy-L 5 0.30 
LateralOccipitotrrnporalGy-R 2 1 .oo 
mp#otrmporol lGiv-L 5 0.30 
ParahippocampalGy-R 3 0.33 
ParahippocampalGy-L 4 0.67 
OccipitalPole-R 1 1  0.51 
OccipitalPole-L 10 0.44 
SUPOCCGY-R 10 0.42 
SU~OCCGY-L 7 0.81 
MidOccGy-R 9 0.56 
MidOccGy-L 9 0.42 
InfOccGy-R 7 0.76 
Inf0CcGy-L 10 0.58 
Cuneus-R 8 0.43 
Cuneus-L 5 0.60 
LingualGyrus-R 5 0.40 
LingualGytus-L 6 0.20 
Insula-R 5 0.40 
Insula-L 6 0.47 
Global Average 6.85 0.50 
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Figure 9.6: Genetically-mediated neuroanatomic networks modeled using graph theory. Panel A 
displays the distribution of the clustering coefficient (C) for 1000 random networks generated using 
permutation of observed data. The value of C from the observed data is given as an asterisk. Panels B 
and C represent graphs of a randomly generated network and the observed graph, respectively. In 
these graphs, nodes are represented as dots on the periphery of the circle and edges as lines; nodes 
are placed such that overlap of edges is minimized. Panel D represents an alternative layout of the 
observed data; darker edges represent stronger correlations. 
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Discussion 

The results from univariate analysis found substantial heterogeneity in the heritability of 

cortical thickness throughout the cerebrum, with the most heritable structures having 

about half of their variability explained by additive genetic effects. The most heritable 

structures were primarily frontal, somatosensory, supramarginal, or superior temporal. In 

general, gyri in the posterior and inferior cerebrum had lower heritability measures. 

These findings are largely consistent with the few prior studies at or above the level of 

resolution of the present study, with the exception that the heritability of cortical 

thickness appears to be smaller in magnitude when compared to measures of gray matter 

density (Thompson et al., 2001) or volumes (Wright et al., 2002). Studies of heritability 

on the lobar level have similarly found lower heritability for occipital lobe volumes 

relative to the remainder of the brain (Geschwind et al., 2002; Wallace et al., 2004), 

though between-lobe differences are less pronounced than differences between gyral- 

level measures. 
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Our multivariate analyses identified several distinct genetic factors that may be involved 

in gyral variability. Cluster analyses largely reproduced lobar segmentation patterns using 

the genetic correlations alone, suggesting that genetic control of the variation in cortical 

thickness may in part be controlled regionally. Molecular genetic studies have 

demonstrated that gene expression of cadherins and other molecules demarcate the gross 

lobar patterns of the cortex by birth (Rash & Grove, 2006), and therefore a similar pattern 

of genetic variability might be expected if polymorphisms exist in the genes responsible 

for prenatal neurodevelopment. Interpretation of these data, however, is somewhat 

limited because clustering imposes a structure to the data which may not be present in 

reality (Hastie et al., 2001). Nevertheless, we believe that in this case the exercise has 

proven fruitful, as it produces findings that largely mimic well-established neuroanatomic 

relationships; additionally heatmaps such as Figure 3 have the advantage that they allow 

for simultaneous inspection of the results and the data used to produce them. 

Though there are no equivalent multivariate analyses in humans, the correlational blocks 

that we observed are strikingly similar to those produced in functional analyses of 

primate cortical connectivity using the large public database CoCoMac (Collections of 

Connectivity on the Macaque) (Passingham, Stephan, & Kotter, 2002; Stephan et al., 

2000; Young, 1993; Young et al., 1995; Young, 1992). For example, Stephen et al. 

performed a multivariate meta-analysis of strychnine nonograpgy in macaque cortex. The 

application of strychnine, which locally inhibits GABAA and glycine, generates increases 

in activity in distal areas that can subsequently be measured. By using several different 

multivariate techniques, including cluster analysis, multidimensional scaling, and graph 



www.manaraa.com

theoretical models, Stephen examined the effects of 245 different local cortical 

applications of strychnine on 3897 tests of activity throughout the cortex. They identified 

three major clusters comprising 1) primary motor area, premotor areas, primary 

somatosensory cortex, and superior parietal regions (PEP and PEm) ,2 )  A "visual" 

cluster including primary visual cortex, extrastriate visual cortex, tempro-occipital 

regions, and medial temporal cortex, and 3) an "orbito-temporal-insular" cortical cluster 

including frontal operculum, anterior insula, and "polar, medial, and allocortical regions 

of the temporal lobe." There also were a few smaller clusters identified, whose structure 

varied depending on analyses methods; one included area 10 (orbitofrontal) and 

subcallossal region (FL), and one involved parietal operculum, area TB, and posterior 

insula. Given the remarkable concordance between these data and our own despite 

substantial methodological differences, it seems possible that variation in human cortical 

networks is related to genes that predate human speciation. 

Multivariate analyses in primates also suggest that the organization of the primate brain 

follows small world architectural rules, by which inter-structural connectivity is dense 

within blocks and more sparse between them (Kotter & Sornmer, 2000; Sporns et al., 

2004; Sporns, Tononi, & Edelman, 2002; Sporns, Tononi, & Edelman, 2000). It has been 

suggested that this type of architecture is an appealing model of neural function since it 

allows both for modularization and efficient integration between functional subregions, 

resulting in enhanced computational power and transmission speeds (2000; Sporns et al., 

2004; Stephan et al., 2000). Despite the fact that structural organization is an area of 

great interest to the field of systems neuroscience, at present there have been few 
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multivariate structural MRI studies in humans (2000; Crick & Jones, 1993; Mesulam, 

2000; Sporns et al., 2004); this fact is somewhat surprising given the rapid increase in the 

use of multivariate techniques for the analysis of data fiom functional and diffusion 

tensor imaging (Ramnani et al., 2004). Though the present study is limited by several 

factors when compared to studies on nonhuman primates (not the least of which are level 

of resolution, implicit rather than explicit physical distances, and a lack of rigorous graph 

theoretical analysis), the dense clustering observable at the gyral level also implies a 

small world architecture. To our knowledge, this is the first evidence of this effect for 

anatomic MRI in humans, though several recent fMR1 and DTI studies have reported 

small world properties in human neural function and white matter orientation (Achard, 

Salvador, Whitcher, Suckling, & Bullmore, 2006; Sporns, Tononi, & Kotter, 2005). 

Since our analyses were based on genetic, rather than phenotypic variances, it also 

appears that genetic factors are involved in the patterning of the human cortex in this 

manner. 

Using PCA, we found that 6 principle components could explain the majority of the 

variance in all 54 gyral measurements. The components resembled the high-level 

groupings identified with hierarchical cluster analysis. Discrepancies between the two 

methods are at least partially owed to the discrete nature of clustering versus the more 

continuous approach in PCA; while a given structure may belong to only one cluster, it 

can have strong loadings on multiple components. The largest principle component in our 

study identified a superior fiontoparietal network. Other important components included 

two factors primarily representing structures involved in visual processing (one 
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including the occipital pole, surrounding occipital gyri, and cingulate cortex, and the 

second influencing medial and ventral occipital lobe and occipitotemporal gyri), a purely 

frontal factor, a temporo-insular factor, and a parietal component most strongly 

influencing structures of the inferior parietal cortex. 

Unfortunately, only a small number of imaging studies have investigated multivariate 

relationships in genetically-informative samples (Baare et al., 2001a; Pennington et al., 

2000; Posthurna et al., 2000b; Schmitt et al., 2006). Of these, the most methodologically 

similar to the present study was that of Wright et al., on which many of our own methods 

were based (Wright et al., 2002). Their analyses found that two principal components 

could account for 24% of the total genetic variance in 92 regions, which they interpreted 

as representing a frontoparietal-limbic system and a supra-regional network involved in 

audition. The structures tapped by the second factor primarily were located in temporal 

lobe, dorsolateral prefrontal and orbitofrontal cortex, insula, and extracortical regions. 

The factor loadings were quite low for both factors (Iloadingsl< .25). Potential reasons for 

the discrepancies between the two studies are numerous, including I )  differing 

phenotypes both in measure (volume versus cortical thickness) and parcellation scheme, 

2) the bivariate model used by Wright constrained genetic correlations to be positive 

while the present study allowed for negative values, 3) the former study used twins only 

while the latter included information from related family members, 4) an adult versus 

pediatric sample, and 5) a fifteen-fold difference in sample size. 
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Given these differences, it is reassuring that our dominant fronto-parietal component is 

similar to the largest component reported by Wright et al, as well as to findings from 

studies on primate cortical connectivity. With the strong structural and h c t i o n a l  

interrelationships between motor cortex, premotor cortex, and parietal lobe, it may come 

as no surprise to find evidence of regionalized genetic influences on structural variability. 

In addition, the fifth component reported in the present study somewhat resembles 

Wright's auditory factor, with large effects on STG and insular cortex and moderate 

loadings on orbitofrontal cortex. The remaining patterns in our data are a bit more 

enigmatic, though structures with high loadings on a particular factor tend to have 

anatomic or functional connectivity with each other. To reverse the problem, however, it 

is unclear why some regions dissociate so clearly, such as superior versus inferior parietal 

lobe, or lateral versus medioventral occipital lobes, despite being in close spatial 

proximity and thought to have related (albeit distinct) functionality. 

Finally, it is important to keep in mind that these analyses do not account for all of the 

genetic variation in the cerebral cortex. In particular, the use of a global covariate 

obscures the presence of a genetic factor that strongly influences the thickness of nearly 

the entire cerebral cortex. A prior volumetric study by our group showed a similar 

phenomenon in a multivariate study of cerebrum and 5 other brain structures of diverse 

ontogenetic origins (cerebellum, basal ganglia, thalamus, corpus callosum, and the lateral 

ventricles) in a genetically informative sample (Schmitt et al., 2006). Thus, although the 

present study suggests that genes play a regional role in overall brain patterning, it 

appears secondary to global effects. As the genes influencing individual differences in 
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brain structure are discovered, it is likely that the genes with the largest effect size will 

influence the entire cortex in concert, with genes of lesser effect acting on specific 

subregions and local networks. 
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VARIANCE DECOMPOSITION OF MRI-BASED COVARIANCE MAPS 
USING GENETICALLY-INFORMATIVE SAMPLES AND STRUCTURAL 
EQUATION MODEL~NG 

"The brain is a world consisting of a number of unexplored continents and great 
stretches of unknown territory" 

--Santiago Ramon y Cajal 
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ABSTRACT 

Multivariate statistical genetic analysis of the cortex has, thus far, been limited to the 

gyral level. In this chapter, we combine classical behavioral genetic methodologies for 

variance decomposition with novel semi-multivariate algorithms for high-resolution 

measurement of phenotypic covariance. Using these tools, we produced correlational 

maps of genetic and environmental relationships between several regions of interest and 

the cortical surface. These analyses demonstrated high, fairly uniform genetic 

correlations between the entire cortex and global mean cortical thickness. Using several 

gyri as seed regions, we found a consistent pattern of bilateral genetic correlations 

between structural homologues, with environmental correlations more restricted to the 

same hemisphere as the seed region. These findings are consistent with the limited 

existing knowledge on the genetics underlying cortical variability, as well as our prior 

multivariate studies on cortical gyri. 
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Introduction 

The development of non-invasive technologies for the acquisition of neuroanatomic 

information has revolutionized our ability both to obtain and to analyze human brain 

structure in vivo. Over the last several decades, magnetic resonance imaging (MRI) in 

particular has greatly expanded our understanding of the neural substrates of many 

psychiatric and neurological diseases, neurogenetic syndromes, typical human 

neurodevelopment, and aging. But with a few notable exceptions (Lerch et a]., 2006; 

Worsley, Chen, Lerch, & Evans, 2005), the vast majority of the work on anatomic MRI 

to date has been univariate. The interrelationships between different regions are 

fimdamentally important, however, given the compartmentalization of essential neural 

functions and the formation of complex neural networks. Many neuroanatomic circuits, 

such as the limbic system, perceptual and motor systems, and networks involved in 

higher cognition, language, and mood might be expected to result in morphological 

correlations between related regions. The mechanisms underlying these observed 

correlations in brain structure are of great neurodevelopmental interest; are they 

generated via shared genetic programming, or rather environmental effects that similarly 

influence different neuroanatomic structures? 

Many research modalities such as axon tracing studies, diffusion tensor imaging, positron 

emission tomography, and even functional imaging have actively pursued methods on 

generating maps of neuroanatomic interrelatedness (Ramnani et al., 2004). Multivariate 

analyses in high-resolution structural data are particularly challenging, however, given 
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the extremely large number of voxels and subsequent immense computational 

requirements (the so-called "curse of dimensionality") for traditional multivariate 

approaches. Recently, semi-multivariate methods for high-resolution mapping of cortical 

correlations have been proposed that provide a work around to the problem of 

multidimensionality, by calculating correlations between all voxels and a target region of 

interest (ROI) (Lerch et al., 2006; Worsley et al., 2005). These semi-multivariate 

approaches, in particular, are easily integrated into quantitative genetic analyses. 

Ln this article, we describe a simple statistical genetic extension to these maps of 

neuroanatomic relatedness. Using a similar global strategy, we use structural equation 

modeling (SEM) on genetically-informative data in order to decompose neuroanatomic 

relationships into those driven by either genetic or non-genetic factors. With these 

extensions we can begin to answer not only which regions are structurally related, but 

also whether observed phenotypic relationships are determined by shared genes or 

environmental forces. 

Methods 

Subjects 

Subjects were recruited as part of an ongoing longitudinal study of pediatric brain 

development at the Child Psychiatry branch of the National Institutes of Mental Health 

(NIMH). Recruitment was performed via local and national advertisements and 

participants were screened via an initial telephone interview, parent and teacher rating 
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versions of the Child Behavior Checklist (Achenbach and Ruffle, 2000), and physical 

and neurological assessment. Exclusion criteria included psychiatric diagnosis in the 

subject or a first degree relative, and head injury or other conditions that might have 

affected gross brain development. Twin zygosity was determined by DNA analysis of 

buccal cheek swabs using 9-2 1 unlinked short tandem repeat loci for a minimum 

certainty of 99%, by BRT Laboratories, Inc. (Baltimore, MD). Twins were included in 

the analysis only if quantifiable MRI scans free from motion or other artifact were 

obtained on both twins at the same age. Written assent from the child and written 

consent from a parent were obtained for all participants. The study protocol was 

approved by the institutional review board of the National Institute of Mental Health. 

The resultant sample consisted of 600 children in total (mean age 1 1.1, SD 3.4, range 5.4- 

18.7), including 214 MZ and 94 DZ twins, 64 singleton siblings of twins (1-2 per family), 

1 16 members of entirely singleton families (2-5 members per family), and 1 12 unrelated 

singletons. The distribution of subjects and basic demographic information are given in 

Table 5.1. Findings on the heritability of high-resolution cortical thickness measures have 

been reported previously with this sample (Lenroot et al., 2007). 

Image Acquisition 

All subjects were scanned on the same GE 1.5 Tesla Signa scanner using the same 

three-dimensional spoiled gradient recalled echo in the steady state (3D SPGR) 

imaging protocol (axial slice thickness = 1.5 mm, time to echo = 5 msec, repetition 

time = 24 msec, flip angle = 45 degrees, acquisition matrix = 192 x 256, number of 
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excitations = 1, and field of view = 24 cm). A clinical neuroradiologist evaluated all 

scans and no gross abnormalities were reported. 

Image Analysis 

The native MRI  scans first were registered into standardized stereotaxic space using a 

linear transformation (Collins et al., 1994) and subsequently corrected for non-uniformity 

artifacts (Sled et al., 1998). The registered and corrected volumes were segmented into 

white matter, gray matter, cerebro-spinal fluid and background using a neural net 

classifier (Zijdenbos et al., 2002). The white and gray matter surfaces are then fitted 

using deformable models resulting in two surfaces with 8 1920 polygons each 

(MacDonald et al., 2000). The white and grey matter surfaces are resampled into native 

space and CT was then computed in native space. Each subject's cortical thickness map 

was then blurred using a 30mm surface based blurring kernel which respects anatomical 

boundaries, resulting in 40962 unique cortical measures (Lerch et al., 2005a). 

Statistical Analysis 

Our overall analytic approach is similar to many of the MACAAC methods described in 

Lerch et al. which calculate Pearson cross-correlations between a target ROI and all 

cortical vertices (Lerch et al., 2006). The present methods differ in that 1) data records 

were based on families rather than individuals and 2) variance decomposition for each 

vertex were computed using SEM in Mx (Neale et al., 2002), a linear algebra interpreter 

and numeric optimizer commonly used in quantitative genetics (Neale et al., 1992). The 

parsing of variation into subcomponents is possible because of the known differences in 
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genetic relatedness between different types of family members. In the simpler univariate 

case, for example, differences between MZ and DZ cross-twin correlations can be used to 

compute the variance attributable to genetic factors across all vertices via the formula: 

Where VAR, is a Nv x 1 vector of genetic variances equal in length to the observed 

measurements (e.g., in our case, Nv = 40962), Vi is the measured cortical thickness for the 

th vertex, and subscripts 1 and 2 denote twin number. NMz and NDZ, ~ M Z  and p ~ z ,  and j 

and k are the number of twin pairs, means, and twin pair index for MZ and DZ groups, 

respectively. This formulation is more simply and familiarly expressed as 

Var,, = 2(covt, - cov, ) for the iIh vertex; the variance analog of Falconer estimation 

(Falconer et al., 1996). A similar procedure can be employed to calculate the genetic 

covariance between two phenotypes of interest by comparing the cross-twin, cross-trait 

covariances between MZ and DZ groups rather than the within-trait covariances. For the 

iIh vertex, in order to calculate the genetic covariation with a seed ROI the formula can be 

modified to: 

Cov, ( y  , ROI) = 2 ( 1  - P j - P r o  ) NDZ Dzvjx-l- piDZ )(ROIkZ - ~ro;DZ2) 

N ,  
-Zk=, 

NDZ 

which simplifies to C O V , ( ~ ,  ROI) = ~(COV, ( y I ,  ROI,) - COV, (v , ,  ROI,)) . These 

simple formulations have some important limitations. The calculation of genetic 
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covariance shown above, for example, effectively ignores half of the available 

information on cross twin covariance. Though including this information is possible, 

several other problems with this approach remain, including 1) these statistics do not 

easily generalize to more than two individuals per family group, 2) no information 

regarding the relative precision of the MZ and DZ correlations is incorporated, which are 

dependent both on sample size and correlation magnitude, 3) generating test statistics to 

determine whether covariation is statistically important is not straightforward, and 4) the 

addition of covariates, such as age and sex, is difficult. 

SEM based approaches provide a straightforward solution to these problems. In the 

present study, family relationships were modeled using a statistical genetic extension of 

the Cholesky decomposition (e.g., Figure 10. I), which factors any symmetric positive 

definite matrix into a lower triangular matrix postmultiplied by its transpose (Neale et al., 

1992). This approach allows for the covariance between two phenotypes to be 

decomposed into covariance resulting from genetic, shared environmental, or unique 

environmental sources but places few apriori constraints on the data. The variance in 

observed variables (denoted as rectangles in Figure 1) are modeled to be mediated by 

latent additive genetic (A.), shared environmental (C.) or unique environmental (E.) 

sources of variance (circles) with latent variances standardized to unity. 
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Figure 10.1: Figure 9.1, reproduced for convenience. Like the previous chapter, a simple 
bivariate model was used to assess neuroanatomic relationships. The analyses differ in that 
rather than investigating all pairwise relationships in 54 gyral regions, each analyses wave in the 
present study compares 40,962 cortical points to a single, target ROI. 

31 ROI 1 u 
This model is identified since the correlation between genetic factors is perfect in MZ 

twins, but, on average, !h between DZ twins and singleton siblings. In the path diagram 

shown in Figure 10.1, single-headed arrows are causal, double headed arrows represent 

correlations, with values on causal arrows (e.g. a l ,  a2, and a3) representing freely 

estimated parameters. The expected covariances of this model produce nine simultaneous 

equations from which the values of the nine free parameters (a., c., e.) can be estimated. 

In practice, the expected covariance matrices varied from 2 x 2 to 10 x 10 depending on 

the number of members in the family (e.g. 1-5). The addition of siblings of twins and a 

large sample of siblings from singleton families (i.e. families with no twins) provided 

substantially increased power to detect genetic signal due to a greater number of observed 

covariance statistics (Posthuma et al., 2000b; Posthuma et al., 2000a). This extended 

design assumes that the shared environment operates similarly in both twins and 

singleton births, with respect to the phenotype of interest. In our sample, families 
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contained a twin pair and up to three additional siblings, or singleton families with up to 

five members in total. Consistent with our univariate analyses (Lenroot et al., 2007), the 

role of the shared environment was minimal for all seed regions, and following the rules 

of parsimony it was removed from the findings reported below. 

Optimization was performed using maximum likelihood (ML) (Edwards, 1972), which 

produces unbiased estimates of model parameters. From the parameter estimates 

calculations of the genetic and unique environmental covariance ( C O V ~  and C O V ~ )  between 

an ROI and all vertices could be determined. In addition, the genetic and environmental 

correlations were calculated by standardizing the decomposed variance-covariance 

matrices: 

Cov, (v, , ROI) Cov, (v,, ROI) 
r, ( v ,  , ROI) = and r, (vi , ROZ) = 

,,/(var, (v,) * Var, (ROI) J ( ~ a r ,  (v,) * Var, (ROI) 

ML also allows for straightforward hypothesis testing, since the removal of parameters of 

interest from the original model produces nested submodels in which the difference in 

ML generally follows a X2 distribution, with degrees of freedom equal to the difference in 

the number of free parameters (Neale et al., 1992). Thus, probability maps indicating 

regions of significant covariances could be constructed. 
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Assessment of Global Covariation 

We first wanted to determine how genetic factors contribute to global covariation 

patterns. MACAAC algorithms include a measure of correlational strength (MACAAC- 

strength), which is the average correlation between vertex i and all other vertices: 

Unfortunately, this approach is computationally demanding, as correlations for all 

painvise combinations of vertices must be calculated. The computational cost is 

magnified with SEM, as numeric optimization must be performed for each painvise 

combination of vertices. However, it has been demonstrated that use of global mean 

cortical thickness as a target ROI provides a reasonable approximation for the average 

correlation across all j (Lerch et al., 2006). This approach represents a special case of the 

general bivariate method of comparing a single ROI to a large vector of vertices. 

Therefore, we employed our general bivariate SEM using mean global cortical thickness 

as the target ROI (k). In addition to modeling the variances as described previously, we 

also simultaneously adjusted for mean effects of sex and age on the phenotypes of 

interest. Sex effects were estimated using a linear model and age was estimated using a 

cubic model, based on prior evidence of age interactions with cortical thickness (Lenroot, 

2005). The resultant parameter estimates provide measures of the dominant forces driving 

interrelationships in cortical thickness. These findings provide similar information to that 
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which would be gleaned fkom examining the dominant eigenvalues of a principle 

component analyses on the N, x N, (40962 x 40962) covariance matrix, after 

decomposing the matrix into genetic and environmental subcomponents. 

The maximal likelihood parameter estimates for the analyses were then projected onto the 

brain surface. In order to gain a thorough understanding of the strength of relationships, 

both covariances and correlation maps were constructed. Additionally, probability maps 

(Ho: r~ = 0 and Ho: r~ = 0) were constructed. The risk of type I error associated with 

multiple testing was controlled by setting a false discovery rate o f .  10 (Genovese et al., 

2002), with q 0  calculated by bootstrap (Storey, 2002). 

Analyses of target ROIs 

We also examined covariances with respect to more localized ROIs, which were chosen 

based on prior univariate studies on the genetic contributions to brain structure (Lenroot 

et al., 2007). Because this study had shown particularly high heritability in Broca's area, 

we chose as our first seed region those vertices in the left inferior gyrus with the highest 

univariate heritability. To generate the remaining seed ROIs, a probabilistic atlas was 

used to assign cortical points to specific neuroanatomic regions (Collins et al., 1999), 

which roughly corresponded to cerebral gyri and were based on the sulcal definitions of 

Ono (Ono et al., 1990). The mean CT for this region was then calculated. In these 

studies, we controlled for global effects by including as a covariate in addition to age 

and sex. Our previous research demonstrated that the most heritable regions of the cortex 

lie in superior and inferior frontal gyri (SFG and IFG, respectively), left supramarginal 

gyrus (SMG), and superior temporal lobe (STG). 
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Results 

Global Covariation 

Genetic correlations with approached unity and were substantially higher than 

environmental correlations, though both had similar patterns. The genetic correlations 

were uniformly high except in the superior parietal lobule and the occipital pole (Figure 

10.2). The regions with the strongest genetic correlations were the frontal cortex, SMG, 

STG, and in parieto-temporal cortex centered on the angular gyrus and continuing into 

lateral temporal lobe. Most primary somatosensory cortex, primary motor cortex, and 

primary visual cortex had lower genetic correlations with b. The most notable 

differences in pattern between the two measures were that genetic correlations in the 

frontal poles, left SMG and STG, and inferior pre- and postcentral gyri bilaterally were 

among the highest in the brain, while environmental correlations were unremarkable in 

these regions. Probability maps (not shown) were uniformly significant, with 86% and 

99% of all vertices significantly correlated with via genetic and environmental factors, 

respectively, at an a of .05. Correlational patterns for both genetic and environmental 

correlations were remarkably similar to measures of phenotypic cross correlations 

reported by Lerch et al., with the genetic correlational maps more similar in magnitude. 
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Figure 10.2: Maps of genetic and environmental relationships between global mean CT and 
individual vertices. Genetic and environmental correlations (rG and rE), covariances (COVG and 
covE), and probability maps testing for significant genetic and environmental covariance. Map of 
MACAACs statistic (lower right) is adapted from Lerch et al. 

Correlations with target ROIs 

When modeling relationships with target ROIs, striking differences were observed 

between the genetic and environmental correlations. Figures 10.3, 10.4, and 10.5 provide 

surface renderings of the results of analyses using several seed ROIs. In general, we 

observed that environmental correlations and covariances tend to be greatest in regions in 

close spatial proximity to the seed, gradually decreasing with greater distance along the 

cortical surface. Environmental correlations were almost entirely unilateral, with some 

notable exceptions. The most obvious of these were environmental correlations between 
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the superior fiontal gyrus and its contralateral homologue, though correlations remained 

highly asymmetrical. Environmental correlations appeared almost entirely positive. 

Genetic correlations, in contrast, were typically bilateral and were occasionally negative. 

Genetic correlations were high both spatially proximal to the seed itself, but also in and 

near the corresponding gyms in the contralateral hemisphere. In many cases, the genetic 

correlations were, in fact, stronger in the contralateral hemisphere. Negative genetic 

correlations were most commonly observed between distal structures, such as between 

frontal ROIs and the occipitotemporal cortex. We also observed some differences in the 

pattern of genetic correlations when the ROI seed was in the left or right hemisphere, 

particularly for the IFG. Though the genetic correlations were strong bilaterally in both 

cases, they were very high between FUFG and the entire fiontal lobe, while genetic 

correlations to LLFG were more restricted to inferior frontal and orbitofiontal cortex. 
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Figure 10.3: Covariance Maps between CT and four seed ROls with high univariate heritability. 
Genetic and environmental correlations (rG and rE), covariances (covG and C O V ~ ) ,  and probability 
maps testing for significant genetic and environmental covariance. 
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Figure 10.4: Maps of the genetic and environmental relationships with the superior frontal gyri. 
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Among the most prominent exceptions to this rule were the results from analyses using a 

seed in Broca's area (Figure 10.5), which resulted in predominantly left-sided genetic 

correlations and included, in addition to adjacent regions of the inferior frontal lobe and 

orbitofi-ontal cortex, portions of the superior and middle temporal gyrus. Additionally, in 

contrast to the predominant unilateral correlations of larger seed regions, Broca's area 

had significant environmental covariance with right dorsolateral prefrontal cortex. 

Figure 10.5: Correlation maps using Broca's area as a seed region. 

Genetic Environmental 

- 0 - 013 
P(cov,=O) 
no FDR - 025 P(c0vE=0) - 038 no FDR - 050 
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Discussion 

These analyses demonstrate that traditional quantitative methodologies for the assessment 

of genetic variance can be integrated with novel multivariate tools for assessing cortical 

connectivity at high levels of resolution. This addition allowed us to decompose 

phenotypic correlational maps into maps of genetic and environmental correlations. 

Using these methods, we found several differences between genetically-mediated and 

environmentally-mediated cortical relationships. While nearly all cortical vertices were 

highly correlated with via shared genetic origins, global environmental correlations 

were somewhat lower. Both genetic and environmental global correlations were highest 

in frontal and tempro-parietal association cortex, and were virtually identical to the 

MACACCs map of phenotypic correlations reported by Lerch et al. (see Figure 10.1). 

Since the MACACC, statistic identifies voxels with the highest average global 

associations, it is logical that association cortex would be most implicated. Interestingly, 

it appears as if this correlational pattern is determined by both common genetic and 

environmental effects. Given recent studies demonstrating that relatively minor 

environmental stimuli can produce changes in brain structure, it is reasonable to speculate 

that the establishment of these cortical networks is dependent on perceptual cues and 

responses to these cues (Draganski et al., 2004; Draganski et al., 2006) as well as 

contributions fiom one's genetic background. 
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The high genetic correlations between nearly the entire cortical surface and are 

consistent with the multivariate genetic studies on volumes, which show a single genetic 

factor accounting for the majority of both total genetic variance and the total phenotypic 

variance (Schrnitt et al., 2006). Environmental factors appear to be somewhat more 

important to CT phenotypic variance than for volumes, but global genetically-mediated 

CT correlations appear largely dominated by a single genetic factor. In other words, 

genetic variation in the human population primarily influences the brain as a whole rather 

than regionally. Such a finding is consistent with radial models of neocortical evolution 

(Rakic, 1995) as well as the more recent modifications of this hypothesis (Kriegstein, 

Noctor, & Martinez-Cerdeno, 2006). It is important to note, however, that genetic 

covariances with were not uniform, but substantially higher in the frontal lobe, middle 

temporal lobe, and supramarginal gyrus, particularly on the left. The discrepancy between 

genetic correlations and covariances likely is due to a larger amount of genetic variance 

within the pediatric population in these regions (Lenroot et al., 2007). 

Seed ROIs 

For most seed ROIs, we observed strong localized environmental correlations and 

regionalized, bilateral genetic correlations, after adjusting for k. In general, most of the 

covariance between the left and right hemispheres was a result of shared genetic 

mechanisms. A regionalized genetic role in bilateral cortical patterning, of course, is not a 

novel concept. Numerous neurogenetic syndromes are associated with bilateral 

abnormalities with very specific anatomical patterns, including several forms of 
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polyrnicrogyria, Smith Magenis syndrome, Turner syndrome, and language disorder 

associated with FOXP2 (2000; Boddaert et al., 2004; Guerrini & Marini, 2006; Mochida, 

2005; Molko et al., 2004; Piao et al., 2005; Watkins et al., 2002). Recent anatomic MRI 

studies have shown that several common genetic polyrnorphisms influence brain structure 

bilaterally and in a regionally-specific manner, including variants of COMT, DISCI, 

BDNF, PCF1, and APOE (2000; Gurling et al., 2006; Hashimoto & Lewis, 2006; 

McIntosh et al., 2006; Nemoto et al., 2006; Wishart et al., 2006). For example, in a study 

of the apolipoprotein E gene (APOE), Wishart et al. found regionalized bilateral gray 

matter reductions in frontal and temporal regions in ~ 4 1 ~ 3  heterozygotes relative to 

individuals homozygous for the ~3 allele (Wishart et al., 2006). The aggregate effects of 

many polyrnorphisms such as these could explain the patterns we observed in population 

genetic variance in CT. Conversely, the information gleaned from studies on genetic 

covariance may facilitate the identification of the genes responsible for structural brain 

variation, by suggesting novel endophenotypic constructs or targets for multivariate 

analysis. 

Dramatic advances in the molecular genetics of cortical patterning have been made in the 

last half decade, though it remains perhaps the least understood region of the brain. 

Considered as a whole, the brain appears to follow the same general developmental rules 

as the rest of the body, using gradients of intrinsic and extrinsic diffusible signaling 

molecules, regulatory factors, and structural proteins to identi@ the principal 

neuroanatomic axes (2000; Grove et al., 2003; Monuki et al., 2001). In the developing 

central nervous system, signaling centers have been shown to regulate anteriorlposterior, 
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dorsaWventra1, and forebraidhindbrain polarity (Grove et al., 2003). The expression of 

transcriptional regulator Pax6, for example, distinguishes progenitors of the cortex from 

subpallial structures, which instead express Gsh2 (Guillemot, Molnar, Tarabylun, & 

Stoykova, 2006; Molnar et al., 2006). There is some evidence that the principals of 

intracortical patterning are similar, with genes such as FGF 3, 7 8, 18, and Pax6 

implicated in specification of the anteriorposterior cortical axis, and several members of 

the Wnt and Bone Morphogenetic Protein (BMP) families in establishment of the 

mediolateral axis in mice (Ciani & Salinas, 2005; Grove et al., 2003; Mallamaci & 

Stoykova, 2006). The molecular determinants of more regionalized cortical arealization 

are less certain, though several proteins (e.g. ephrins, cadherins, and members of the 

immunoglobulin superfamily) are expressed in specific patterns in the cortex (Monuki et 

al., 2001). Of these, the ephrins (diffusible molecules involved in axonal guidance), have 

been shown to have roles in the pattering of retinotectal, thalamocorticaI, and 

somatosensory circuitry (Flanagan, 2006; Price et al., 2006). 

The principle exception to bilateral genetic correlations was our analyses of Broca's area, 

and to a lesser extent, the LIFG as a whole. In the case of Broca's area, remarkably, the 

highest genetic correlations were largely found in left orbitofrontal and middle fi-ontal 

regions, as well as the superior and middle temporal gyri, and, in the case of LIFG, left 

supramarginal gyrus. The association between structures implicated in language is highly 

suggestive of a role of additive genetic factors in language development, particularly 

given the hemispheric specificity of the findings. 
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Although these findings represent a unique perspective on the genetics of brain structure, 

the limitations of the analyses must be considered in order to evaluate their utility. As this 

research represents a fusion of high-resolution anatomic methods as well as genetic 

techniques for twin and family covariance modeling, the general caveats for both apply to 

this research. Also, as our sample was entirely derived from a pediatric population, its 

generalizability to other ages is unclear. Indeed it is likely that future work on adults may 

find distinctly different patterns of genetic covariance, as childhood brain structure may 

be more strongly influenced by ontogenetic processes underlying brain formation itself, 

while adult brains will have had more time for these effects to attenuate, as well as the 

potential novel genetic and experiential effects on covariance to manifest. Finally, it is 

noteworthy that due to the inherent flexibility of SEM, the models reported here can 

easily be expanded to address more subtle questions about genetic and environmental 

etiology, such as the effects of age or other moderators on covariance patterns, or how 

intracortical relationships influence behavior measures. 
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A BRIEF NOTE ON BRAN AND BEHAVIOR 

"The mere fact that so much genetic variation [in intelligence] exists shouldprovide a 
powerful incentive to research workers in psychology and many other related disciplines 
to search for the physical basis of intelligent behavior. The existence of this genetic 
variation guarantees that differences between people do, indeed, have a physical as well 
as experiential basis. " 

--David W. Fulker and Hans J. Eysenk, 'Wature and Nurture: Environment." In 
Eysenk's The Structure and Measurement of Intelligence, 1979. 

King Arthur: Surely you've not given up your quest for the Holy Grail? 
Minstrel: He is sneaking away and buggering ofl-- 
Sir Robin: [to minstrel] Shut up! [to Arthur] No, no no-- far from it. 

--Graham Chapman, Neil Innes, and Eric Idle, Monty Python and the Holy Grail, 
1975. 
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The integration of biological data with behavioral phenotypes typically represents the 

climax of nearly any serious study of neurobiology, and the lack of behavioral data in the 

previous ten hefty chapters likely was noted by the reader long ago. Yet it is with no 

coincidence that we have disregarded the subject of behavior to the final pages of this 

long text, as identifying meaningful brain-behavioral correlates in our sample has proven 

quite challenging. 

Difficulty in finding strong relationships between complex biological phenotypes and 

brain structure is nothing new, however. Neuroscientists have long endeavored, for 

example, to identify strong links between intelligence and brain volumes and with only 

modest success; both Broca and Galton struggled, largely in vain, to understand this 

relationship. Even with modem technology, until very recently there has been little 

consensus on the role of brain volume on IQ. Neuroimaging studies have produced quite 

inconsistent evidence, with correlations between IQ and total brain volume between .OO 

and .60, with most estimates reporting small but significant correlations of about .35 

(Andreasen et al., 1993; Gur et al., 1999; Reiss et al., 1996; Vernon, Wickett, Bazana, & 

Stelmack, 2000). Subdividing the brain into substructures historically has provided only 

modest increases in the predictive power for the most correlated subregions. 

What are we to make of these findings? The twin literature on common behavioral 

measures is extensive and informs us that IQ is among the most heritable of all 

behavioral phenotypes (Bouchard & Mcgue, 198 1 ; Posthuma, 2002), an observation 

confirmed in our own sample (Figure 1 1.1). Thus, as its variance is largely determined 
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by biological sources, IQ is arguably among the best behavioral candidates for twin 

studies including data from biological endophenotypes. As reviewed in Chapter 3, there 

is some evidence of genetic correlations between large brain volumes and intelligence, 

though the overlap is disappointingly small (.29 versus total gray matter, .24 versus total 

white matter) (Posthuma et al., 2002). 

Figure 11 .I: Maximum likelihood parameter estimates from ACTE decomposition of several 
behavioral phenotypes from the Giedd sample. Behavioral measures include IQ, VIQ, and PIQ 
(left), the "trailmaking task" (TRAILS A and B), CANTAB tests of spatial working memory (SWM) 
and spatial recognition memory (SRM), and handedness measures (GP) from the PANESS. . . -- - . . 

Prior to a retreat into Cartesian dualism, however, it is important to realize that volume is 

merely one (albeit highly heritable) metric of brain structure. Functional endophenotypes 

such as fMRI, EEG and PET notwithstanding, numerous other physical characteristics 

are of great interest to brain functionality (Gray & Thompson, 2004). Both gray and 

white matter density, for example, have been shown to be correlated with IQ, and there is 

some evidence of genetic conhibutions to the relationship (Hulshoff Pol et al., 2006; 

Thompson et al., 2001). 
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For both pragmatic and theoretical reasons, we opted to examine the relationships 

between IQ and cortical thickness rather than volumetric measures in our initial analyses. 

For the same sample and ROIs reported in Chapter 9 (54 gyral measures of mean cortical 

thickness on 600 children), we used bivariate SEM to decompose the variance between 

IQ and CT into generated by either genetic or nongenetic sources. The covariance and 

correlation maximum likelihood parameter estimates fi-om these analyses are given in 

Figures 1 1.2 and 1 1.3. 

Phenotypic correlations between IQ and the ROIs were universally low. Interestingly, 

however, the genetic and unique environmental covariances were substantially larger and 

of opposite sign. Thus, it appears as if the effects of genes and environment appear to 

mask one another in the phenotypic correlation, an effect that has long been considered 

possible on theoretical grounds but rarely is observed. This phenomenon may be, at least 

in part, responsible for the long tradition of weak correlations observed between 

structural endophenotypes and measures of intelligence. 

Interestingly, the environmental correlation between IQ and CT is positive; in other 

words, environmental effects that increase CT also appear to increase IQ. Is such a result 

believable? In a landmark study, Draganski et al. demonstrated that environmental 
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Figure 11.2: Covariances between IQ, VIQ, and PIQ and mean cortical thickness for 54 gyral subregions. Phenotypic covariances are shown in black, genetic 
covariances in red, shared environmental covariances in blue, and unique environmental covariances in green. 
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Figure 11.3: Correlations between IQ, VIQ, and PIQ and mean cortical thickness for 54 gyral subregions. Phenotypic correlations are shown in black, genetic 
correlations in red, and unique environmental correlations in green. 
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exposure to a complex motor activity (juggling) produced a 3% increase in mid temporal 

gray matter (Draganski et al., 2004) after only 3 months of exposure. Similarly, medical 

students subjected to their 2-year comprehensive examination ("Physikum", roughly the 

German equivalent of USMLE step 1) had increases in gray matter in the posterior and 

inferior parietal lobe and hippocampus, regions associated with learning within months 

(Draganski et al., 2006). Several studies have shown that taxi drivers' unremitting 

exposure to the streets of London, renown even to Dickens and Byron for their 

labyrinthine network, increase hippocampal volumes (Biegler, McGregor, Krebs, & 

Healy, 2001; Maguire, Woollett, & Spiers, 2006; Maguire, Nannery, & Spiers, 2006; 

Maguire et al., 2000). Thus, it is not impossible that intellectual ability and brain 

structure could be correlated by certain environmental exposures. An obvious possibility 

is the mutual effect of learning environment on both CT and IQ, though other 

possibilities and confounds can not be ruled out with these basic models. 

In contrast to environmental correlations, genetic correlations between IQ and CT are 

generally negative, implying that some of the genetic factors that increase IQ also 

decrease CT. Such an observation is not inconsistent with the biology of neuronal 

pruning and synaptic plasticity. Recent longitudinal research on pediatric brain 

development has shown that the relationship between cortical thickness and intelligence 

is a dynamic process. A study by Shaw et al. demonstrated that cortical thickness is 

negatively correlated with IQ in young children but positively correlated in older children 

(Shaw et al., 2006a). Furthermore, longitudinal models revealed a significant differential 

trajectories in cortical development, depending on IQ, for several anatomic regions 

(Figure 1 1.4). Considered with our data, this finding suggests the intriguing possibility of 
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interactions between genes, age, and IQ on cortical development, with genetic factors 

playing the dominant role at early ages (when IQICT phenotypic correlations are 

negative), and environmental factors becoming relatively more important in late 

childhood and adolescence. 

Figure 11.4: Figure by Shaw et al. on differences in the developmental trajectory of mean cortical 
depending on IQ status in a pediatric sample. The significant (colored) regions in the brain 
renderings at center were used to construct a ROI for genetic analyses (Shaw et al., 2006a). 

2.6 

In order to test this hypothesis, we first constructed two ROIs, one encompassing the 

vertices from significant regions reported by Shaw et al. (colored vertices in Figure 1 1.4, 

ROIs) and a second negative control region encompassing the rest of the brain (ROIc). 

For each subject, we calculated mean CT values for both regions. Preliminary univariate 

modeling found that the heritability of ROIs (a2 = .66 [.34, .75], c2=.00 [.00, -261, e2= -34 
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[.25, .46]) was substantially higher than the ROIc control region (a2 = .39 [.07, .55], c2 

x.00 [.00, .18], e2 - .61 [.45, .82]). Interaction models were then constructed in which 

moderators allowing for age, IQ (dichotomized into low or high IQ groups by the median 

IQ of 1 1 O), or their interaction to influence the contributions of genetic and nongenetic 

factors to influence mean cortical thickness. 

The results of these models are summarized in Figure 1 1.4. Within the ROI, strong gene 

by age interactions were observed in the high IQ group, with no interactions observable 

in the low IQ group. Interactions with age via environmental factors were substantially 

smaller in both IQ groups, but in older children the role of environment on the total 

variance became relatively more important. The age by IQ interaction was statistically 

significant for both genetic (x: = 9.8, AIC = 7.8, p-value = .0017) and environmental 

factors (x: = 4.3, AIC = 2.3, p-value = .0371). Attempts to create a scalar model by 

equating the interaction terms also were not possible (~ : ' 4 .6 ,  AIC = 2.6, p-value = 

.032 1). A similar pattern was observed in the control ROE, but the magnitude of the 

interaction was substantially smaller than those in ROIs. 
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Figure 11.4: Changes in variance in mean CT with age inside and outside of an ROI based on Shaw et al.. 
Line color represents variance component (red=additive genetic, green=unique environmental), while line 
type represents IQ group (solid=high IQ, dashed=low IQ). Panel A displays results from ROls while Panel B 
are findings from ROlc. 

Within ROI Outslde ROI 

Although functional forms in Figure 1 1.4 do not parallel the mean CT age trajectories, it 

is noteworthy that there are striking similarities between changes in CT variance and the 

rate of change in mean CT (Figure 1 1.5) when splitting by IQ group. This similarity may 

reflect a genetic effect on the level of neuronal proliferation or neuropil formation in 

those genetically predisposed for higher IQ. 

Figure 11.5: Comparison between derivatives of mean CT trajectories, from Shaw et. al. (Panel 
A) and changes in total CT variance in high (solid) and low (dashed) IQ groups (Panel B). 

Wllhln ROI 
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Conclusions 

Our findings suggest that genetic and nongenetic factors influence the relationship 

between CT and IQ differently, and that observed relationships between phenotypes and 

endophenotypes may represent an amalgam of different biological processes that often 

work via opposing mechanisms. Additionally, more complex models suggest that like 

many aspects of child neurodevelopment, the associations between genes, brain and 

behavior must be considered to be dynamic processes in order to fully understand their 

relationships. Although these analyses represent a provocative first glimpse into the 

genetic role in brain-behavioral correlations, much more work needs to be done. Further 

longitudinal modeling will be required in order to quantify age interactions with a higher 

level of certainty. 
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"Our field may be in particzilar need of integrative pluralism, where scientists, without 
abandoning conceptual rigor, cross borders between different etiologicalJi.ameworks or 
levels of explanation. Such eflorts may be unusually scientiJicallyJiwitfu1 and work bit by 
bit toward broader integrative paradigms." 

--Kenneth Kendler, "Toward a Philosophical Structure for Psychiatry" American 
Journal of Psychiatry. 162:433-440,2005. 
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In the final chapter of a scientific dissertation, it is customary to dedicate many words to 

restating the principal findings of all preceding chapters. As these findings are 

summarized in the general abstract preceding this document and with increased detail in 

the individual chapter abstracts (reproduced collectively in Appendix E), I would instead 

like to discuss emerging themes fiom the work and the potential for future research in 

behavioral neurogenetics. 

Sir Humphrey Davy once said that "nothing tends so much to the advancement of 

knowledge as the application of a new instrument. The native intellectual powers of men 

in different times are not so much the causes of the different success of their labours, as 

the peculiar nature of the means and artificial resources in their possession" (Davy, 

1995). While this perspective may understate the general importance of creativity in 

scientific endeavor, it is largely the case in this work. Curiosity about the etiological 

underpinnings of the brain and its dynamics are not novel questions, but rather can be 

traced back thousands of years to Aristotle and before. With the availability of modern 

neurobiological, psychological, and statistical tools, our work has been a simple and 

natural extension of existing research. Thus, at minimum, our research is a lesson in the 

unrealized potential of interdisciplinary studies that combine knowledge of genetics, 

classical neuroscience, statistics, psychology, and psychiatry. 

Yet methodological development, in this case, was merely a means to an end. Looking 

back at the amassed results of several years of research, it is natural to ask 

epistemological questions. Do calculations of heritability on brain volumes, for example, 



www.manaraa.com

increase scientific knowledge about the role of genetics in brain structure, or are the 

findings so obvious apriori as to make them meaningless? Is the investigation of 

neurobiological structure useful when it is performed largely independent of measures of 

function? Or for the more complex findings, are the modem computational methods used 

so dependent on so many constituent algorithms (and their inherent assumptions) as to 

make any inferences gleaned fiom them tenuous? In other words, have we gained 

knowledge from this endeavor, and if so, is this knowledge useful? 

Although some of the findings of the work strongly conform to common sensibilities 

about the nature of the brain, there is still inherent value in demonstrating that they are 

true empirically. Confirming apriori knowledge about neuroanatomic variability 

represents a critical improvement in the bedrock understanding of behavioral 

neurogenetics. Most findings from our more complex multivariate examinations of brain 

structure integrate remarkably with the limited existing knowledge of neurodevelopment 

and the genetics of brain evolution. Yet at the same time, these examinations address 

these questions from quite a unique perspective. Novel information is often most useful 

when it simultaneously confirms and challenges the zeitgeist; many of the results fiom 

our work adhere to this principle. 

Considered as a whole, these analyses show that genetic factors are extremely important 

in generating neuroanatomic variability throughout the brain. Notably, interpretation of 

the data differs depending on its level of resolution. Indeed, this dissertation can largely 

be considered as two sequential surveys of brain genetics (the first univariate, the second 
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multivariate) for different levels of anatomic magnification. Most of the variance in large 

structures is explained by strong, ubiquitous genetic factors, hypothesized to be involved 

in cell growth and proliferation. Nevertheless, exquisite genetically-mediated patterns of 

neuroanatomic variance and covariance emerge when examining smaller structures. For 

example, perhaps our most sensational observation was that of cortical thickness 

heritabilities being highest the regions of the cerebrum most unique to homo sapiens, 

suggesting a correlation between the genes that make us human and the genes that make 

us individuals. These patterns from HIA integrate nicely with more global and 

intermediate-level analyses, but each level conveys slightly different information about 

brain structure. 

Yet as this dissertation comes to a close, it is most clear that there is far more work ahead 

than work accomplished. Examinations of neurodevelopment, in particular, have been 

limited by the cross-sectional nature of the data. As NIMH's longitudinal pediatric twin 

project progresses, it will soon become possible to address developmental questions more 

definitively. Similarly, identification of the specific genes involved in brain structure, 

perhaps partially informed by the present work, are likely to occur with increasing 

rapidity and will enable a better understanding the processes underlying our complex 

neural architecture. More comprehensive information about the genetics underlying 

brain-behavioral correlations also will be required. Our preliminary investigations 

suggest that the work in this area will be difficult and complicated by the dynamics of 

childhood, but not impossible with carefully-crafted developmental models. 
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APPENDIX A: SYNOPSIS OF MAMMALIAN BRAIN EVOLUTION 

"Seen in the light of evolution, biology is, perhaps, intellectually the most 
satishing and inspiring science. Without that light it becomes a pile of sundry 
facts some of them interesting or curious but making no meaningfiulpicture as 
a whole. 9 9 

--Theodosius Dobzhansky. "Nothing in Biology makes sense, except in the light 
of evolution." The American Biology Teacher (35 : 125- 129) 1973. 
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ABSTRACT 

This appendix outlines the dominant theories on the evolution of the mammalian 

brain, with a focus on what volumetric research has revealed about the 

development of the cerebral cortex. Within the context of natural selection as an 

evolutionary force, the prevailing theories of the events leading to mammalian 

divergence from reptiles are discussed. Additionally, the current understanding 

about the origins of mammalian neurodiversity are outlined. It is argued that the 

development of cortical lamination, driven by an increased requirement for 

olfactory processing, was the most probable impetus for the development of the 

distinctly mammalian cerebral cortex. Further, the extant evidence suggests that 

the enormous variability in mammalian brain size was caused by a combination of 

traditional neo-Darwinian selective mechanisms and a series of developmental 

constraints that are unique to the central nervous system. 
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Perhaps the most unique trait of members of the human species is the desire to 

understand our origins and those of the world. Millennia of philosophical, scientific, and 

religious inquiry on the former topic can be condensed into two deceptively simple 

questions, namely 1) who are we? and 2) how did we get here? From a modem biological 

perspective, the first question is the fundamental goal of the neurosciences, and the latter 

is the unifylng theory of genetics, i.e. evolution. 

The present chapter is an attempt to summarize the current understanding of brain 

evolution, which is essentially a fusion of these two questions. In particular, the focus is 

on the development of the mammalian brain, though several other vertebrates are briefly 

mentioned as usehl comparisons. The topic is quite complex and can be intimidating for 

the reader not fluent in the often esoteric language of evolutionary neurobiology. 

However, it is not the intention to overwhelm but rather to demonstrate that the core ideas 

are both intuitive and fascinating, hopehlly without an excess of quickly-forgotten 

nomenclature. 

Historical Background 

Throughout the history of evolutionary theory, understanding the origin of behavior and 

cognition has been a central and controversial topic in the scientific debate on evolution. 

Long after the scientific community had accepted evolution as the dominant mediator of 

biological diversity, many resisted evolution as an explanation for psychological traits, 

particularly in humans. In this contentious discussion, the evolution of the brain became 
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the critical link between the biological forces of evolution and the more ethereal qualities 

of the mind (Larson, 2002). 

Lamarck appears to be the first to attempt to unify evolutionary theory with the origins of 

brain and behavior. He postulated (incorrectly) that inter-species variation in brain size 

was caused by increased cognitive use (Lamarck, 1963). Thus, Lamarck's opinions about 

the evolution of brain and mind are consistent with his general theory of evolution, and 

completely analogous to his example of a giraffe evolving a long neck by stretching to 

access ever-higher vegetation. Darwin later proposed that selective advantage was the 

cause of increased brain size as part of his theory of natural selection, with selection 

indirectly influencing neuroanatomic physiology via the outward manifestation of its 

structure, namely cognitive and behavioral ability (Darwin, 1871). It was hypothesized 

that the brain, as a biological organ, followed the same general evolutionary rules as other 

biological structures. An important point, however, is that in brain evolution, selection is 

largely not operating on the structure itself. The brain has no outward phenotype on 

which most selective pressures could exert evolutionary changes. But selection for 

cunning, increased perceptual ability, and motor skill would indirectly influence the 

physical properties of neural tissue. According to the classical view, changes in the brain 

are merely the physical manifestations of these intangible yet highly adaptive traits. 

The first true evolutionary models of the brain, linking actual brain structure with 

phylogenetic "progress" were proposed by Edinger in 1908. His model literally stratified 

the brain into subdivisions based on comparative neuroanatomic research of vertebrate 
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species (Swanson, 2000). According to Edinger's general model, species generated 

improved computational abilities and novel cognitive skills by layering new brain tissue 

on top of the previously existing neural systems of their ancestors with little change in 

older structures. For example, the most basic of functions, such as respiration and 

digestion, were the domain of the reptilian brain, the evolutionarily oldest region. Edinger 

viewed vertebrate evolution as a linear progression from simple (e.g. reptiles) to 

advanced (e.g. humans), with a corresponding increase in behavioral complexity with 

each new layer of neural tissue laid down. This theory persists in medicine in the form of 

MacLean's theory of the Triune brain (Figure A l .  1) which divides the brain into 

reptilian, paleomammalian, and neomammalian components (MacLean, 1990). 

According to MacLean's model, advancements in primate evolution resulted from the 

application of the last layer (neomammalian brain) laid down most recently, in the form 

of cerebral cortex. This is essentially the classic "march of progress" for neuroanatomy, 

which considers advanced cognitive functions as restricted to higher primates. The theory 

of the Triune brain persists in the literature to this day. The research presented below, 

however, suggests that the theory is highly flawed (Swanson, 2000). 

Figure A l . l :  MacLean's Triune Brain 
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From Serapsid to Mammal 

What are the origins of the mammalian brain? All vertebrates, including mammals, share 

a common ancestral origin. Within modem vertebrates, however, there is tremendous 

diversity in neural structure. For example, even after controlling for body size, total brain 

size varies 30-fold in vertebrates (Northcutt, 2002). Yet as Northcutt notes, there are 

some predictable characteristics that apply to the nearly all species in the Vertebrata 

subphyla. First, nearly all vertebrates have the same number of basic neuroanatomic 

subdivisions, though they can be quite morphologically different (Figure A1.2). The only 

known exceptions are the agnathans (e.g lampreys) that lack a definitive cerebellum. 

Second, substantial differences in brain size are seen when making comparisons between 

classes (e-g. Marnrnalia, Reptilia, and Aves), and increasing size, both within and between 

taxa, usually corresponds to increasing functional specificity and behavioral complexity. 

Unique mammalian neuroarchitecture began 200 million years ago as the primordial 

mammal diverged from ancestral reptiles (Northcutt & Kaas, 1995). 

Figure A1.2: Neuroanatomic structure of vertebrates of different orders. Regions denoted in like 
patterns are structural homologues. Ch = cerebral cortex, Cb = cerebellum. (From Northcutt and Kaas 
1995) 
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The most striking difference between mammals and other vertebrates is in the size and 

structure of the cortex. The cortex is essentially a vast sheet of neurons that forms at the 

most rostra1 end of the developing nervous system. There has been a dramatic expansion 

in cortical volume in mammals compared to the most phylogenetically similar modem 

amniotes, namely reptiles and amphibians (Rakic & Lombroso, 1998). The isocortex 

itself is unique to mammals and all mammals have it; though reptiles, birds, and 

amphibians have cortical tissue as well, the mammalian isocortex represents a 

revolutionary change in design. This suggests that isocortex evolved only once and at a 

timepoint prior to the mammalian radiation (Aboitiz, Morales, & Montiel, 2003; 

Northcutt et al., 1995). 

The fundamental structure of the cortex is distinctly altered in the mammalian isocortex. 

There is an expansion of cellular layering from three layers to six, which in turn 

influences computational ability and neural circuitry (Aboitiz et al., 2003). Also of note is 

that the development of the mammalian isocortex occurs in reverse order relative to most 

other structures in the mammalian brain and to the entirety of brain development in 

reptiles. The reptilian brain develops "outside in," a process in which neurons migrate to 

the brain surface first, then slightly preceding to the first set of neurons, and so on. In 

isocortex, younger neurons migrate past established neurons to rest at the brain surface. 

Finally, the mammalian isocortex has developed an entirely novel type of neuron, the 

multilayered pyramidal cell, which represents a substantial advance in computation and 

inter-neuronal communication (Marin-Padilla, 2003). 
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How did mammals develop such a radically different neural structure? Two predominant 

hypotheses have been developed to explain how this unique isocortex was generated, 

denoted the "recapitulation hypothesis" and the "outgroup hypothesis" (Northcutt et al., 

1995). The details of both theories are complex and highly dependent on understanding 

neuroanatomic jargon. The premises, however, are quite simple (Figure A1.3). The out- 

group hypothesis states that the mammalian isocortex resulted fi-om an expansion of the 

dorsal-most cortex of the common ancestor of reptiles and mammals (a synapsid). In 

contrast, the recapitulation hypothesis posits that the isocortex developed not fiom 

synapsid cortical tissue at all but instead evolved from an entirely different region known 

as the dorsal ventricular ridge (DVR) which is present in modern day reptiles but absent 

in mammals (Aboitiz et al., 2003). The out-group hypothesis posits that the DVR 

develops independently in reptiles after they have diverged fiom other taxa. 

The recapitulation hypothesis, originally proposed by Karten, has been the dominant 

explanation for isocortex development for the last thirty years but the outgroup 

hypothesis has been rapidly gaining favor (Puelles, 2001b). Which theory is correct? 

Unfortunately, there is still an active, ongoing controversy. In a groundbreaking review, 

Aboitiz presents comprehensive evidence from comparative neuroanatomic, 

developmental, and paleoentological approaches (Aboitiz et al., 2003). Dispute arises 

because of strong yet conflicting evidence. The outgroup hypothesis is supported by 

detailed analyses of neuroanatomic connections, which show that the DVR in reptiles and 

the isocortex in mammals have similar relationships with other structures. For example, 
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many sensory connections from the thalamus project to the DVR in reptiles but to the 

cerebral cortex in mammals (Karten, 1997; Karten, 2005). However, the analogy is not 

perfect. In particular, the mammalian isocortex and archicortex (limbic system) are 

strongly associated, while the archicortex and the DVR are virtually unconnected in 

reptiles (Aboitiz et al., 2003). 
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Figure A1.3: Two hypotheses of isocortical development. In the recapitulation hypothesis, the dorsal 
ventricular ridge (DVR) in a shared reptilian-mammalian ancestor develops into isocortex in 
mammals but remains DVR in reptiles. In the outgroup hypothesis, isocortex develops from ancestral 
dorsal cortex and the DVR evolves independently in reptiles. (adapted from Aboitiz et al., 2003) 

The outgroup hypothesis is largely supported by developmental evidence. Streitder et al. 

has shown that the embryological origins of the DVR and the isocortex are markedly 

different (Aboitiz et al., 2003; Striedter, Marchant, & Beydler, 1998), with the DVR 

originating deep within the brain and the isocortex originating on its dorsal surface. 
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Molecular genetic evidence also supports the outgroup hypothesis. 

Irnmunohistochemistry of transcription factors critical for embryogenesis (e.g. homeotic- 

like genes such as Otx and Pax) with precise spatial expression demonstrate homologous 

patterns between isocortex in mammals and dorsal cortex (rather than DVR) in reptiles, 

as the outgroup hypothesis would suggest (Gellon & McGinnis, 1998; Puelles & 

Rubenstein, 1993). There are, however problems with developmental studies. detractor of 

the work, Northcutt, has correctly noted that similarities between structures do not 

necessarily mean common origins (homology). Other explanations, such as convergent 

evolution (homoplasmy), could also describe the observed data (Northcutt, 2003). 

Despite the controversy, most experts agree that the outgroup hypothesis is more likely. 

Most of the twenty experts that provided peer commentary on Aboitiz' review agreed that 

the evolution of isocortex from dorsal cortex is the more probable hypothesis. The 

molecular genetic evidence would also seem to be highly suggestive of this hypothesis, as 

would the rules of parsimony. The DVR is developmentally distinct from cortical 

regions, which means that the switch to isocortex (as put forth in the recapitulation 

model) would represent a more drastic change. Thus, the outgroup hypothesis would 

mean a simpler (though still substantial) change from ancestral structure to the generation 

of isocortex. If it is true, however, then several problematic questions arise. Namely, it is 

unclear how genetic programming would have radically altered neural connections when 

isocortex was generated, and why reptiles (and particularly their more cognitively 

advanced avian relatives) did not also evolve isocortex, under similar pressures toward 

increased computational power. 
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If the outgroup hypothesis is true, then it has profound implications regarding what 

evolutionary pressures created mammals. In reptiles, the dorsal cortex is primarily 

responsible for olfaction, i.e. the sense of smell, and spatial mapping (Aboitiz et al., 2003; 

Bota, 2003). This suggests that selective pressures for increased olfactory processing 

ability may have been the driving evolutionary force that created divergence between the 

neuroanatomy of mammals and reptiles. The critical event that allowed this generation of 

isocortex may have been the ability to develop "inside out," as described previously 

(Super & Uylings, 2001). In "outside in" development, the expansion of cortex outward 

is constrained by outgoing neuronal fibers (axons) sending their projections to other 

regions. In other words, the axons are located closer to the brain surface than neuron 

bodies and these axons create a physical barrier to neuronal expansion. In "inside out" 

development, neurons migrate past the ultimate location of axons to rest closer to the 

brain surface. This situation allows for unrestricted enlargement outward. Further, the 

genetic alterations that would be required to produce isocortical expansion could have 

been relatively minor. For example, a few mutations in chemotaxic signaling pathways 

could have altered the paths of migrating neurons (Super et al., 2001). 

This hypothesis of mammalian evolution also is not difficult to reconcile with the general 

conception of ancestral mammals as small rodent-like reptilian creatures in the age of 

dinosaurs. One can almost picture these tiny creatures filling a specific, perhaps nocturnal 

niche in a world of giant predators. This would be a place where a keen sense of smell 
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and an ability to remember important environmental locations could be the means for 

survival. 

Brain Evolution Within Order Mammalia 

Endocasts from primitive mammals have shown that although there is an anatomical 

divergence from reptiles more than 200 million years ago, brain size in mammals 

remained virtually constant until about 60 million years ago (-5 million years after the 

Cretaceous extinction). This places cortical expansion approximately at a time when 

placental and marsupial mammals diverged from each other rather than at the 

mammalian divergence from reptiles (Northcutt et al., 1995). Thus, at least two 

fundamental innovations led to the evolution of intelligent mammals: 1) a change in 

design of neurocircuitry (200 million years ago) and 2) a change in amount of 

neurocircuitry (beginning 60 million years ago) over 100 million years later. This section 

will focus on the latter process. 

Figure A1.4: Examples of diversity in mammalian brain size and structure. Specimens include cetaceans, 
rodents, insectivores, humans, and primates (from the Comparative Mammalian Brain museum at 
http:llbrainmuseum.org.). 

From the Cretaceous to the present, both endocasts and comparative biological 

approaches show that a tremendous amount of diversity in total mammalian brain exists 
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(Figure A1.4). For example, the surface area of the isocortical sheet ranges from 6-10 

cm2 in insectivores to about 2200 cm2 in humans (Northcutt et al., 1995). The expansion 

of isocortex appears to have evolved independently within several mammalian radiations. 

Every major mammalian class has this high level of variability (Northcutt et al., 1995). 

Thus, increases in brain size in mammals appear to be an example of convergent 

evolution, in contrast to the singular evolutionary event that created isocortex. 

Classical evolutionary notions postulate that the variability in brain volumes results from 

selective pressures on behavioral traits. For example, insectivores rely almost solely on 

olfaction with little need for other senses, complex motor skills, social cognition, or 

sensory integration (Brown, 2001). Conventional wisdom would dictate that relatively 

little computational power is required for an insectivore to function. Therefore the brain 

would have little reason to evolve larger than that of the ancestral mammal. Insectivores, 

in fact, have small, relatively undeveloped brains. In contrast, the combination of 

selective pressures towards bipedal locomotion, tool use, social structure, and hunting 

behaviors resulted in the need for vast increases in processing requirements and 

functional specificity in human ancestors, which placed selective pressures on evolving a 

larger brain (Darwin, 187 1 ; Finlay, Darlington, & Nicastro, 200 la). 

Absolute brain size, however, is not the sole determinant of computational power. Finlay 

and Darlington give the pointed example of volumetric differences between a ruby 

throated hummingbird and a baleen whale (Finlay et al., 2001a). The former has a brain 

size of less than one gram, while the latter has a brain volume of approximately 5000 
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grams. Although it is certainly true that these animals have quite different environmental 

niches and neuroprocessing needs, both animals have complex behaviors and it is 

difficult to quantify which one is computationally "superior." However, it is hard to 

believe that whales have 5000 times greater computational requirements. Perhaps a better 

example would be to compare the whale to another mammal, such as Saimiri sciureus 

(the squirrel monkey) which has a brain weight that is about 45 times smaller than that of 

the whale but a remarkable (perhaps more complex) behavioral repertoire as well 

(personal calculations and observations). Thus, simple selection based on increased 

cognitive needs alone cannot be the only determinant of brain size. It follows that 

computational power probably is not entirely dependent on absolute brain size. 

Allometry, a mathematical subfield of comparative anatomy, was founded because of this 

problem. The goal of allometry is to attempt to quantify relationships between key 

evolutionary variables. Analyses have shown that total brain size increases with body size 

at an exponential rate (Finlay et al., 2001a). Mathematically, the relationship has been 

demonstrated to be: 

where y = brain size, x = body size, a = slope, and b = y-intercept, and the slope is 

generally estimated from .56 to .75 depending on the mammalian species used in the 

analyses (Kruska, 2005). Simply put, larger mammals have larger brains independent of 

their cognitive ability (Figure 5A). The exact reasons for this have not yet been 
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elucidated. One hypothesis is that larger animals require increased neural innervation to 

skeletal muscles and more computational power for motoric processing in order to 

control the larger muscles in their larger bodies. Similarly, increased sensory processing 

would be required to handle an increased number of messages from sensory neurons in a 

body with a larger volume. However, this could not be the whole story as the entire brain 

scales with body size and not just the regions responsible for sensory and motor functions 

(Finlay et al., 2001a). 

Exactly how the brain scales is the source of greatest controversy in mammalian 

evolution. There is general agreement that species with larger brains than predicted based 

on body size (encephalization) are more likely to be cognitively advanced than those with 

brains equal to or smaller than predicted (Finlay et al., 2001a). For example, dolphins, 

non-human primates, and humans are the most encephalized mammals and also are 

believed to be among the most behaviorally advanced of all animals (Kruska, 2005). All 

things equal, a larger brain size is a good predictor of a more cognitively "advanced" 

species (Figure A 1 SB). 

Controversy arises over the role of selection on brain organization beyond total brain 

size. If we examine the brain's functional subregions, what should we see? The 

traditional viewpoint, coined the "mosaic hypothesis," is quite similar to what Darwin 

would postulate (Brown, 2001). It simply argues that subregions within the brain with 

different computational functions are going to be differentially influenced by selective 

pressures based on those functions (Finlay et al., 2001a). For example, an animal 



www.manaraa.com

particularly dependent on sight would be under selective pressure to improve visual 

acuity which would, in turn, disproportionately increase the computational power of 

centers controlling visual processing. By contrast, the "developmental constraint" 

hypothesis says that evolutionary pressures largely act on the brain as a whole. Applying 

this hypothesis to the previous example, we should observe an increase in total brain size 

as a result of selective pressures on visual ability alone. 

Squirrel monkey 
Bca~n 22 g 
Body QOg 

L .- . . -- 
2 o n o  5 o i c  [nu 
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body wouhr 

Galago 
Brain 10.3 g 
Body 850 9 

Hedgehog 
Brain 3.35 g 
Body 860 g 

Figure A1.5: Mammalian brain weight to body weight comparisons. Panel A is a Log-log plot of body weight (g) 
and brain weight (g) for 93 species within the order Carnivora (includes cats, dogs, bears, etc). Note the 
extremely strong correlation between body size and brain size. (From Krushka 2004). Panel B: Exceptions to the 
rule. Even for mammals of comparable body mass, there can be substantial variability in brain volume. While 
body size increases from left to right, brain size and behavioral complexity increases from right to left (the galago 
is a prosimian). All things (more or less) equal, brain size is a good predictor of overall behavioral complexity. 
(From Northcutt 1995). 

At first glance, the developmental constraint hypothesis may seem unlikely. There are 

numerous examples of one organ system component increasing in size relative to others; 

disproportionate growth is practically the rule rather than the exception. Under the 
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developmental constraint hypothesis, Lamarck's giraffe would grow proportionally in 

size until the vegetation could be reached, producing a giant horse-like creature rather 

than a long-necked one. Further, there are myriads of well-documented genetic regulators 

of brain patterning that selection could potentially act upon, each controlling specific 

regions (Gellon et al., 1998). This would provide a far more energetically favorable way 

to produce improved function, as these changes would not produce an excess of "useless" 

brain tissue, which is extremely expensive metabolically (Rubenstein & Rakic, 1999b). 

However, there is extraordinarily compelling evidence that the developmental constraint 

hypothesis for brain evolution is at least partially true. Using comparative neuroanatomic 

analyses of multiple mammalian species, Finlay and Darlington have repeatedly shown 

that total brain volume is highly correlated with regional volumes (Figure 7.5), 

irrespective of region (including all neuroanatomic regions described in the present 

article). Further, total brain volumes account for the vast majority (>96%) of the observed 

volumetric variance in all regions measured except for the olfactory bulb (Darlington et 

al., 1999; Finlay & Darlington, 1995; Finlay et al., 2001a). These results suggest that the 

subcomponents of the brain are scaling together; if individual regions are selected for 

independently, then this should not happen. 

Such strong correlations are thought to reflect a generalized adaptation to specific 

selective pressures; although it is more energetically expensive to expand the 

computational resources of the entire brain when only specific functions are needed, the 

molecular adjustments required to perform whole-brain scaling are far fewer than those 
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required to completely repattern the brain. Genes involved in regional patterning, such as 

Hox transcription factors, are tightly regulated (Gellon et al., 1998) and mutations in 

these genes may universally lethal, malung mosaic evolution difficult. An alternative 

mechanism of modifying brain size would be to increase overall neuronal proliferation by 

relatively few alterations in cell cycle regulators, which would result in an increase in the 

total number of neurons and a larger brain. For example, prolonging progenitor cell 

division by a few cycles would be a way to exponentially increase the brain's 

computational power without tinkering with its overall design. Thus, although it may be 

less desirable to scale up the entire brain to obtain a specific function, it may be 

genetically easier to do so. Several well-designed neuroanatomic studies have supported 

this hypothesis by showing that increased cellular proliferation, at least in part, may be 

responsible for increased isocortical volumes in mammals (Rakic et al., 1998a). 

Finlay and Darlington go so far as to speculate that the growth of the isocortex over 

mammalian evolution may be an indirect result of the need to increase some structure 

involved in lower functions, such as the brainstem, rather than any fimction of the 

isocortex at all (Finlay et al., 200la). In this extension of their hypothesis, the cerebral 

cortex is essentially an evolutionary spandrel, whose initial development is only 

coincidentally related to the selective pressures that created it. However, the new cortical 

tissue does not go unused in their model, and is instead "pressed into service" to perform 

evolutionarily useful computational functions that the environment can select for. Exactly 

how this would work is never detailed, but it suggests that much of mammalian 

intelligence resulted from an evolutionary accident. 
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However, there are numerous studies that report evidence that the mosaic hypothesis, 

rather than the developmental constraint hypothesis, is the dominant force in brain 

evolution (Barton & Harvey, 2000; Brown, 2001; de Winter & Oxnard, 2001; Jones & 

MacLarnon, 2004). For example, Barton and Harvey use log-log plots of isocortical 

volumes versus total brain volume (Figure A1.7A) to show that primates have a higher y- 

intercept than insectivores, suggesting that primates have a 5-fold increase in cortex 

relative to predictions based on whole-brain scaling (Barton et al., 2000). Kaas and 

Collins provide an impressive anecdotal example by demonstrating that the size of the 

structure known as the superior colliculus (a structure 
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Figure A1.7. Differences in neocortical volume by species. Panel A is a log-log plot of neocortical volume versus 
whole brain volume in primate (open and closed circles) and insectivore (diamond) species. Upward displacement 
of primates relative to insectivores demonstrates that predicted neocortical size is higher in primates for a given 
total brain volume (from Barton and Harvey 2000). Panel B: comparison of the squirrel brain (left) to the rat brain 
(right). Though similar in volume, it is clear that the superior colliculis (SC) is not comparable in size between these 
species (modified from Kaas and Collins 2001). 
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important in basic visual processing) is dramatically different between rats and squirrels 

(Kaas & Collins, 2001) despite a comparable brain size (Figure A1.7B). Clearly, brain 

structures do not always scale together. 

The debate over the relative merits of these two theories is intense. Proponents of mosaic 

brain evolution have provided convincing evidence that this mechanism does indeed 

occur. Often, however, studies employ the most extreme cases to support their theories 

(e.g. insectivores versus primates, or highly specialized mammals such as bats, 

marsupials, etc.). This sheds some doubt on their generalizability. Certainly mosaic 

evolution occurs, but is it the overriding force in the evolutionary process to the exclusion 

of all others? In plots of brain volume versus substructure volumes (e.g. Figure 6), the 

most prominent characteristic is not the magnitudes of deviations from the predicted 

values (i.e. residuals). Rather, what is strilung is how little residual variation there after 

adjustment for brain volumes. Though Finlay and Darlington's spandrel hypothesis of 

cortical evolution is highly suspect, it does appear that the brain is under some 

developmental constraints. While some evolutionary biologists appear resistant to accept 

any form of neuoanatomic constraint (e.g. see Brown 2001), most realize that it likely 

had at least some role in general neural expansion (Finlay, Darlington, & Nicastro, 

2001b). 

Similarly, it seems highly unlikely that a developmental constraint hypothesis can be the 

only general mechanism for brain evolution. It is too dependent on brain volumes alone 

in order to defend its case. The mammalian brain represents a diversity of interconnecting 
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pathways, cell types, functional divisions, and numerous other properties that are often 

glossed over in traditional allometry (Northcutt, 2002). Certainly, brain volume is not 

everything. Not only do more intelligent mammalian species have larger brains, but their 

brains are also much more complex, with an increase in the number of total functional 

subunits, which reflect changes in design in addition to scale (Northcutt, 2002). These 

changes would not be predicted by developmental constraints alone. Perhaps a third 

fundamental theoretical mechanism will be required; the development of novelfunctional 

stratification of the brain following or concurrent with overall expansion, as well as 

interactions between volumes based on interrelated functions. Indeed, these theories are 

complementary; it is easy to see how developmental constraints could be driving the 

similarities in volumetric trends when making mammalian interclass comparisons, while 

mosaic evolution would explain deviations when examining how individual species adapt 

to their individual environmental niches. 

Conclusions 

The development of the mammalian brain is quite complex, but several general principles 

can be distilled from the compendious literature on the subject. It seems likely that the 

neuroanatomy of the oldest mammals diverged fiom reptiles as a consequence of 

increased olfactory requirements, which in turn resulted in the formation of a novel form 

of cortex. Later, the mammalian cortex expanded, allowing for several evolutionary 

innovations. Part of this increase in brain size is associated with increased body size 
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independent of cognitive ability. Within mammals, regulation of brain size probably 

resulted from a combination of selective pressures on individual brain regions with 

specific behavioral components, as well as developmental constraints imposed by the 

genetic elements that pattern the brain. 
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APPENDIX B: SAMPLE SCRIPTS FOR THE AUTOMATED ANALYSIS OF 
VOXEL-LEVEL DATA 

"In inventing a model we may assume what we wish, but should avoid impossibilities" 

--Aristotle 
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This appendix provides sample scripts for the automated analyses of neuroimaging data. 

The example is based on the first analyses attempted; that of basic ACE modeling and 

associated submodels (the printed version includes means regression that was added later, 

but otherwise is the original script constructed in Fall 2004). During the course of the 

Giedd project, the scripts were periodically optimized, modified for different purposes 

(e.g. bivariate models, multiple loops for generation of large correlation matrices), and 

simplified when possible, but the overall strategy is virtually identical in all analyses. 

The present analysis consists of four scripts: 1) a large R script was used to control the 

analysis at a global level, performed data management, and calculated rudimentary 

statistics, 2) Mx performed iterative, customizable statistical genetic analyses, 3) a small 

shell script inserted starting values calculated in R into Mx, and 4) a second shell script to 

extract confidence intervals from the output file. 
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#SCRIPT TO RUN VOXELWISE ANALYSIS FOR ACE MODEL with CIS 

#CD TO APPROPRIATE WD 
# s e t w d ( " / h o m e / s c h m i t t / ~ R A ~ ~ / C ~ / ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ )  

#LOAD WORKSPACE FROM NIMH 
load("-/BRAIN/CT/data/twin-cttasc.txtH); 

#load vector of twin numbers (1 or 2) or sib number (1,2, or 3); later 
versions calculate dynamically 
rndor<-(read.table("-/BRAIN/CT/data/n~mber.txt~~)) 

#REMOVE OLD RESULTS FILES 
system("rm -rf ACEbyvoxel.rnxa",ignore.stderr=TRUE); 
system("rm -rf fullbyvoxel.mxa",ignore.stderr=TRUE); 

#REMOVE UNNECESSARY VARIABLES FROM DEMOGRAPHIC TABLE 
gf$RACECOMT<-NULL; 
gf$MRINUM <-NULL; 
gf$DATESCAN <-NULL; 
gf$BRACES <-NULL; 
gf$SCANCOM <-NULL; 
gf$Axial <-NULL; 
gf$AxiNote <-NULL; 
gf$Plane <-NULL; 
gf$AxiSvrty <-NULL; 
gf$ETHNICTY<-NULL; 

#CONVERT FACTOR VARIABLES TO NUMERIC VALUES SO THEY ARE READABLE BY Mx 
gf$SEX i- factor(gf$SEX, c('F1,'M'),O:1); 
gfSHANJ3 <- factor(gf$HAND, c('R','M','L'),O:2); 
gf$GROUP <- 
£actor(g£$GR0UP,c('MZTWN','DZTWN','S1B0FTWN','S1NGLET0N1),0:3); 
gf$RACE <-factor(gf$RACE,c('W','B','A1,'M','U'),O:4); 

#ENSURE NUMERIC CODING FOR ZYGOSITY (MZ 0 ,  DZ 1, SIB 2, SIN 3) 
gf[,ll~-as.numeric(substring(as.character(gf[,l]),33,37)); 
gf[,21<-as.numeric(gf[,2]); 
gf [,21<-gf [,21-1; 

#BEGIN LOOP FOR ALL 40962 VERTICES 
for (i in l:length(dt[,l])){ 

#EXTRACT CT MEASURE FOR ALL SUBJECTS AT THE iTH SPATIAL LOCATION, 
RESCALE 
CT <- 10*dt[i,]; 

#ATTACH VOXEL CT VALUES TO DEMOGRAPHIC VARIABLES 
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#EXTRACT AGE, SEX TO CALCUATE STARTING VALUES FOR MEANS BETA WEIGHTS 
sex<-comb[, 43 
age<-comb [ , 8  I 
age2<-age**2 
age3<-age**3 

#CALCULATE BETAS VIA REGRESSION 
reg<-lm(CT-sex+age+age2+age3) 
betas<-coef(reg) 

#WRITE BETAS AND INTERCEPT TO FILE 
write.table(t(betas[2:5]),fi1e="betas.txt",row.nmes=FALSE,col.nmes=FA 
LSE, quote=FALSE) 
write.table(betas[ll,fi1e="mean.txt1',row.name~=FALSE,~~1.nme~=FALSE,qu 
ote=FALSE) 

#CALCULATE STARTING VALUES FOR VARIANCE COMPONENTS 
sv<-(var(residuals(reg))/2)**.5 
sv2<-(var(residuals(reg)))"".S 
w r i t e . t a b l e ( s v , f i l e = " s v . t x t " , r o w W n a m e s = ~ o t e = F A L S  
E 
write.table(sv2,file="sv2.txtt',rowWnmes=FALSE,col.nmes=FALSE,quote=FA 
LSE) 

#CREATE DATASETS BY PRIMARY GROUPS 
twins<-subset(comb,GROUP<=l); 
sibs<-subset(comb,GROUP==2); 
singletons <-subset(conb,GROUP==3); 

#SPLIT TWINS INTO TWIN1 and TWIN2 
twinl<-subset(twins, twins[,9]==1); 
twin2<-subset(twins, twins[,9]==2); 

#COMBINE TWINS INTO A PAIRWISE DATASET 
Twinpair~-merge(twinl,twin2,by="~AM1~",all.x=TRUE,all.y=TRUE); 

#SPLIT SIBS DATASETS 
sibl<-subset(sibs,sibs[,9]==1); 
sib2<-subset(sibs,sibs[,9]==2); 
sib3<-subset(sibs,sibs[,9]==3); 

#MERGE SIBS INTO A SINGLE DATASET 
sibs1pair~-merge(sib1,sib2,by=~FAM1D1',a11.x=TRUE,a11.y=TRUE); 
sibsPair~-merge(sibslpair,sib3,by='1FAMID",all.x=TRUE,all.y=TRUE); 

#MERGE TWINS AND SIBS 
Fms~-merge(Twinpair,sibsPair,by="FAMID1',all.x=TRUE,all.y=TRUE); 
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#CONVERT MISSING AGE AND SEX TO DUMMY VARIABLE (-999) For F ~ s  
Fams[is.na(Fams[,4]) ,4]<- 0 
Fams[i~.na(Fams[,81) , 8 1 < -  0; 
Fams[is.na(Fams[, 131) ,13]<- 0; 
Fams[is.na(Fams[,l7]),17]<- 0; 
Fams[is.na(Fams[,22]) ,221<- 0; 
Farns[is.na(Fams[,26]) ,26]<- 0; 
Fams[is.na(Fams[, 311 ) ,31]<- 0; 
Fams [is.na(Fams[,351) ,35l<- 0; 
Fams[is.na(Fams[,40]) ,40]<- 0; 
Fams[is.na(Fams[,44]) ,44]<- 0; 

#SAME FOR SIBS 
sinsPair[is.na(sinsPair[,4]),4]<- 0; 
sinsPair[is.na(sinsPair[,8]),8]<- 0; 
sinsPair[i~.na(sinsPair[,l3]),13]<- 0; 
sinsPair[i~.na(sinsPair[,l7]),17]<- 0; 
sinsPair[is.na(sinsPair[,22]),22]<- 0; 
sinsPair[i~.na(sinsPair[,261),26]<- 0; 
sinsPair[i~.na(sinsPair[,31]),31]<- 0; 
sinsPair[is.na(sinsPair[,35]),35]<- 0; 
sinsPair[is.na(sinsPair[,40]),40]<- 0; 
sinsPair[is.na(sinsPair[,44]),44]<- 0; 

#WRITE DATA FILES 
write. table (data. frame (Fams) , file="CTtwinTemp. txt" ,na=". " , quote=FALSE, r 
ow.names=FALSE,col.names=FALSE); 
write. table (data. frame (sinspair) , file="CTsinTemp. txt" , na=" . " , quote=FALS 
E,row.names=FALSE,col-names=FALSE); 

#FIND/REPLACE KEYWORDS WITH STARTING VALUES 
system("repmeanvar") 

#RUN Mx!!! 
system("/usr/local/bin/mxt161f < brain2.m~ > brain.mxoU) 

#EXTRACT CONFIDENCE INTERVALS FROM TEMPORARY OUTPUT FILE 
system("cica1c") 

#SAVE OUTPUT IN APPENDING FILE 
system("cat brain.mxo>>brainLOG.mxo") 
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Mx Script for Running ACE models in an Extended Twin Design 

! SCRIPT FOR RUNNING ACE Models on voxel-level data in an Extended twin 
Design 

!Script based on twin modeling designs in Mx (see Neale and Cardon) 
with 

! Address all complaints to Eric Schmitt (schmittje@vcu.edu) 

!DESCRIPTION: this script is intended to run all voxel-level analyses 
serially, 
!saving relevant parameter estimates and fit statistics along the way. 

!ASSUMPTIONS: in the current model all means and variance components 
!parameter estimates are assumed to be the same for all individuals. 
!Relaxing this assumption for means values can be done without 
specifying 
!new variables; for other parameters more programming would be 
required. 

!remove existing output file since append option will be active 
system rm -rf output.mxa 
system rm -rf withchi.mxa 

#define nummodels 6 
#define numpars 10 
#define numpars2 12 

!BEGIN MODEL 
GI: General Model parameters 
Calc Ngroups=6 !number of program segments 

!declare initial matrices 
Begin Matrices; 

!DIRECT PATHS from latent to observed variables 
A full 1 1 free !additive genetic 
C full 1 1 free !shared environment 
E full 1 1 free !unique environment 

!FIXED SCALAR MULTIPLIERS 
H full 1 1 !fixed scalar = - 5  
K full 1 1 !fixed scalar = 2 

L full 1 1 !fixed scalar = 3 

! Parameter estimates sex age for multiple regression predicting mean 

R Full 1 4 fixed !sex age meanCT betas for means regression 

End Matrices; 
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Ma H .5 !set H=.5 and ensure that it is fixed-used in halving DZ 
genetic 
!correlation 
Ma K 2 !set K=2 and ensure that it is fixed-used in squaring variance 
components 
Ma L 3 

!Optional: Set initial values for direct paths from ACE latent 
variables 
!based on descriptive statistics 

Ma A 
CTSTART 
Ma C 
CTSTART 
Ma E 
CTSTART 

Ma R 
INSERTBETAS 

!creating A2/C2/E2 variables not necessary in this version-relevant 
algebra 
!performed in covariances command in individual groups 

Begin algebra; 
End Algebra; 

option noout 
End 

G2: Monozygotic twin pairs for cortical thickness 
Data Ninput_vars=46 Nobserved=159 !enter number of observations here 
Rectangular file=CTtwinTemp.txt 

Labels FAMID 
ID1 ZYGl SEXl RACE1 HAND1 SESl AGEl V1 CT1 
ID2 ZYG2 SEX2 RACE2 HAND2 SES2 AGE2 V2 CT2 
ID3 ZYG3 SEX3 RACE3 HAND3 SES3 AGE3 V3 CT3 
ID4 ZYG4 SEX4 RACE4 HAND4 SES4 AGE4 V4 CT4 
ID5 ZYG5 SEX5 RACE5 HAND5 SES5 AGE5 V5 CT5 

Select IF ZYGl=O; !ZYGOSITY=MZ ; !MZ = 0; DZ = 1, 

Select SEXl AGEl CT1 SEX2 AGE2 CT2 SEX3 AGE3 CT3 SEX4 AGE4 CT4; 

Definition-variables SEXl AGEl SEX2 AGE2 SEX3 AGE3 SEX4 AGE4; ! Female 
= 0 ,  Male = 1, age in years 

Matrices=Group 1 
G Full 1 1 Free ! means for twins 
F Full 1 1 Free ! means for sibs 

0 Full 1 1 fixed ! definition variable age.x 
Q full 1 1 fixed ! definition variable age.y 
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S Full 1 1 fixed ! definition variable sex-x 

B Full 1 1 fixed ! definition variable age (sibl) 
D Full 1 1 fixed ! definition variable sex (sibl) 

I Full 1 1 fixed ! definition variable age (sib2) 
J Full 1 1 fixed ! definition variable sex (sib2) 

End Matrices; 

Ma G 
INSERTMEANCT 
Ma F 
INSERTMEANCT 

Specify 0 AGEl!age twin1 
Specify Q AGE2!age twin2 
Specify S SEXl!sex twins 

Specify B AGE3 !age sibl 
Specify D SEX3 !sex sibl 

Specify I AGE4!age sib2 
Specify J SEX4!sex sib2 

!MODELING OF MEANS 
! y = u + (B1 * SEX) + (B2 * AGE) 

Means 
G+(sJoJo~K(o~L)*R~ (G+(sIQIQ~KJQ~L)*R' IF+(DJBJB"KIB~L)*R~ J F + ( J ( I J I ~ K J I ~ L  
)*R1 / !modeling means 

!Expected covariance matrix; covariance formula could be simplified 
!since age and sex are same between pairs in this sample. 

!covariance statement must be modified to allow for sib to have less 
correlated shared environment 
Covariances 

option noout 
End 
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G3: Dizygotic twin pairs for cortical thickness 
Data Ninput_vars=46 Nobserved=159 !enter number of observations here 
Rectangular file=CTtwinTemp.txt 

Labels FAMID 
ID1 ZYGl SEXl RACE1 HAND1 SESl AGEl V1 CT1 
ID2 ZYG2 SEX2 RACE2 HAND2 SES2 AGE2 V2 CT2 
ID3 ZYG3 SEX3 RACE3 HAND3 SES3 AGE3 V3 CT3 
ID4 ZYG4 SEX4 RACE4 HAND4 SES4 AGE4 V4 CT4 
ID5 ZYG5 SEX5 RACE5 HAND5 SES5 AGES V5 CT5 

Select IF ZYG1=1; !ZYGOSITY=MZ ; !MZ = 0; DZ = 1, 

Select SEX1 AGEl CT1 SEX2 AGE2 CT2 SEX3 AGE3 CT3 SEX4 AGE4 CT4; 

Definition-variables SEXl AGEl SEX2 AGE2 SEX3 AGE3 SEX4 AGE4; ! Female 
= 0, Male = 1, age in years 

Matrices=Group 1 
G Full 1 1 Free ! means for twins 
F Full 1 1 Free ! means for sibs 

0 Full 1 1 fixed ! definition variable age.x 
Q full 1 1 fixed ! definition variable age.y 
S Full 1 1 fixed ! definition variable sex.x 

B Full 1 1 fixed ! definition variable age (sibl) 
D Full 1 1 fixed ! definition variable sex (sibl) 

I Full 1 1 fixed ! definition variable age (sib2) 
J Full 1 1 fixed ! definition variable sex (sib2) 

!L Full 1 1 fixed ! definition variable age (sib3) 
!M Full 1 1 fixed ! definition variable sex (sib3) 

End Matrices; 

Specify G 43 !specify parameter assignments for means 
Specify F 44 

Equate G 2 1 1 G 3 1 1 
Equate F 2 1 1  F 3 1 1 

Ma G 
INSERTMEANCT 

Ma F 
INSERTMEANCT 

Specify 0 AGEl!age twin1 
Specify Q AGE2!age twin2 
Specify S SEXl!sex twins 

Specify B AGE3 !age sibl 
Specify D SEX3 !sex sibl 
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Specify I AGE4!age sib2 
Specify J SEX4!sex sib2 

!MODELING OF MEANS 
! y = u + (B1 * SEX) + (B2 * AGE) 

Means 
G + ( S ~ O J O ~ K ~ O ~ L ) * R ~ ~ G + ( S I Q I Q ~ K I Q ~ L ) * R ~ I F + ( D ( B I B ~ K ( B ~ L ) * R ~ I F + ( J I I I I ~ K I I ~ L  
)*R'/ !modeling means 

!Expected covariance matrix; covariance formula could be simplified 
!since age and sex are same between pairs in this sample. 

!covariance statement must be modified to allow for sib to have less 
correlated shared environment 
Covariances 

option noout 
End 

G4: Singleton families and true singletons for cortical thickness 
Data Ninput_vars=46 Nobserved=159 !enter number of observations here 
Rectangular file=CTsinTemp.txt 

Labels FAMID 
ID1 ZYGl SEXl RACE1 HAND1 SESl AGEl V1 CT1 
ID2 ZYG2 SEX2 RACE2 HAND2 SES2 AGE2 V2 CT2 
ID3 ZYG3 SEX3 RACE3 HAND3 SES3 AGE3 V3 CT3 
ID4 ZYG4 SEX4 RACE4 HAND4 SES4 AGE4 V4 CT4 
ID5 ZYG5 SEX5 RACE5 HANDS SES5 AGE5 V5 CT5 

Select SEXl AGEl CT1 SEX2 AGE2 CT2 SEX3 AGE3 CT3 SEX4 AGE4 CT4 SEX5 
AGE5 CT5; 

Definition-variables SEXl AGE1 SEX2 AGE2 SEX3 AGE3 SEX4 AGE4 SEX5 
AGES; ! Female = 0 ,  Male = 1, age in years 

Matrices=Group 1 
F Full 1 1 Free ! means for sibs 

0 Full 1 1 fixed ! definition variable age sibl 
Q full 1 1 fixed ! definition variable age sib2 
S Full 1 1 fixed ! definition variable sex sibl 
N Full 1 1 fixed ! definition variable sex sib2 

B Full 1 1 fixed ! definition variable age (sib3) 



www.manaraa.com

D Full 1 1 fixed ! definition variable sex (sib3) 

I Full 1 1 fixed ! definition variable age (sib4) 
J Full 1 1 fixed ! definition variable sex (sib4) 

X Full 1 1 fixed ! definition variable age (sib5) 
M Full 1 1 fixed ! definition variable sex (sib5) 

End Matrices: 

Ma F 
INSERTMEANCT 

Equate F 2 1 1 F 4 1 1 

Specify 0 AGEl!age sibl 
Specify S SEXl!sex sibl 

Specify Q AGE2!age sib2 
Specify N SEX2!sex sib2 

Specify B AGE3 !age sib3 
Specify D SEX3 !sex sib3 

Specify I AGE4!age sib4 
Specify J SEX4!sex sib4 

Specify X AGE5!age sib5 
Specify M SEX5!sex sib5 

!MODELING OF MEANS 
! y = u + (B1 * SEX) + (B2 * AGE) 

Means 
F + ( S ~ ~ J O ~ K ~ O ~ L ) * R ~ I F + ( N I Q I Q ~ K I Q ~ L ) * R ~ I F + ( D ~ B I B ~ K I B ~ L ) * R ~ J F + ( J J I I I ~ K I I ~ L  
)*R'IF+(MIXIX"KIX"L)*R'/ !modeling means 

!Expected covariance matrix; covariance formula could be simplified 
!since age and sex are same between pairs in this sample. 

!covariance statement must be modified to allow for sib to have less 
correlated shared environment 
Covariances 
AAK+CAK+EAK I H@A"K+CAK 1 H@AAK+CAK IH@A^K+C^K IH@A"K+c^K- 
H@A"K+CAK 1 AAK+CAK+EAK I H@A"K+CAK JH@A^K+C^K IH@A"K+c^K- 
H@AAK+C"K I H@A"K+CAK I A^K+C"K+E^K IH@A"K+C^K IH@A^K+C^K_ 
H@AAK+C"K ( H@A"K+CAK I H@A"K+CAK IA^K+C"K+E^K IH@A~K+c^K- 
H@AAK+CAK I H@AAK+CAK I H@A"K+CAK IH@A"K+C"K IA^K+C^K+E^K / 

option noout 
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G5: Concatenate parameters into a single vector 
Data Calculation 
! (Matrix Q concatenates output from this group) 

Begin Matrices = Group 1 
End Matrices; 

Begin Algebra; 
!Estimated Variance using mean values for age and sex 
P = A I C I E I R ;  !approximate variance partitioning + parameters 

End Algebra; 

Option RS 
End 

G6: Calculate Fit statistics and concatenate local parameters (mean) 
with global parameters 
Data Calculation 
Begin Matrices; 
A Full 1 1 = %F2 !fit MZ 
B Full 1 1 = %F3 !fit DZ 
C Full 1 1 = %F4 !fit singletons 
D Full 1 1 = G2 !mean twins 
E Full 1 1 = F2 !mean sibs 
P COMP 1 12 = P5 ! 
End matrices; 

Begin Algebra; 
M = D I E ;  
Z = A+B+C; 
I = PJMIZ; !parameter vector 'P' with means 'M' and fit ' Z '  
concatenated 
End Algebra; 

Labels Columns I A C E R-sex R-age R-age2 R-age3 u-Twin u-Sib Fit 
option noout 
Option Format=(lOD14.6) 
Option mxi=output.mxa !output file for parameter vector (appended to 
others 1 
Option append 
Option rs multiple issat !multiple fit in effect 
End 

save full.mxs 

!DROP A Genetic parameters 
get full.mxs 
DROP A 1 1 1 
Ma 1 C 
CTSTART 
Ma 1 E 
CTSTART 

End 
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!DROP C Senv parameters 
get full.mxs 
DROP C 1 1 1 
MA 1 A 
CTSTART 
M A 1 E  
CTSTART 

End 

!DROP AC Uenv parameters 
get full.mxs 
D R O P A 1  1 1 C 1  1 1  
MA 1 E EONLYSTART 

End 

!DROP Sex regression 
get full.mxs 
DROP R 1 1 1 
End 

!DROP Age regression 
get full.mxs 
DROP R 1 1 1 
Exit 

!GRAB POTENTIAL STATISTICS OF INTEREST 
G1: Calculate Chi-squared and AIC values relative to the full model 
Calc Ngroups=l !number of program segments 

Begin Matrices; 
P Full nummodels numpars 
Q Full 1 4 !coordinates for Full model -2LL 
A Full 1 4 !coordinates for VECTOR of -2LL values for submodels 
K Full 1 1 !scalar 2 
B Unit nummodels 1 !unit vactor 
C Full nummodels 1 !df for AIC to FULL 

End Matrices; 

!HAVE TO MANUALLY INPUT DF HERE 
M a c 0 1 1 2 1 1  

Ma K 2 !parsimony bonus per df for AIC 

Ma P File=output.mxa !input parameter file 

Ma Q 1 numpars 1 numpars !definition of submatrix to extract Full Fit 
Ma A 1 numpars nummodels numpars !definition of submatrix to extract 
other fits 

Begin Algebra; 
R=\part(P,Q); !extract fit function of saturated model 
S=B@R; !set up subtraction of submodel fits !turns a scalar to a column 
FULL -2LL 
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T=\part(P,A); !extract fit functions 

D=CQK; ! 2 * df to full 

M=(T-S); !calculate X2 values to full 

V=(M)-(D); !calculate AIC (X2 - 2 * df) (re1 to Full) 

End Algebra; 

option format=(12D14.6) 
option mxz=withchi.mxa 
Exit 

G2 GENERATE VOXELWISE OUTPUT FOR FULL MODEL (with X2 of submodels) 
Calc Ngroups=l 
Begin Matrices; 
Z Full 6 12 
A Full 1 4 
B Full 1 4 
C Full 1 4 
D Full 1 4 
E Full 1 4 
F Full 1 4 
End Matrices 

Ma Z File=withchi.mxa !input parameter file 

Begin Algebra; 
= \part(Z,A) I \ p a r t ( ~ , B ) l \ p a r t ( ~ , ~ ) I \ ~ ~ ~ t ( ~ , ~ )  l\part(Z j l p  art (z, F) ; 

End Algebra; 

!Labels columns Y a c e Reg-SEX Reg-AGE u-Twin u-Sib Fit X2-CE AIC-CE 
X2-AE AIC-AE X2-E AIC-E X2-nosex AIC-nosex X2-noage AIC-noage 

option append 
option format=(25D15.6) 
option mxy=fullbyvoxel.mxa 
Exit 
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Shell Script to Insert Starting Values into Mx Script 
(later versions use #include, which is less error prone) 

Shell Script to Extract Confidence Intervals from Output Files and Save as Vectors 
(later versions execute these commands via a system call from within the R script)) 

/bin/grep 'X 5 1 1' brain.mxo I awk '{print $6)' >> a2.txt 

/bin/grep 'X 5 1 1' brain.mxo 1 awk '{print $7)' >> a2L.txt 

/bin/grep IX 5 1 1' brain.mxo I awk '{print $8)' >> a2U.txt 

/bin/grep 'Y 5 1 1' brain.mxo 1 awk '{print $6)' >> c2.txt 

/bin/grep ' Y  5 1 1' brain.rnxo I awk '{print $7)' >> c2L.txt 

/bin/grep ' Y  5 1 1' brain.mxo I awk '{print $8)' >> c2U.txt 

/bin/grep ' Z  5 1 1' brain.mxo I awk '{print $6)' >> e2.txt 

/bin/grep ' Z  5 1 1' brain-mxo I awk '(print $7)' >> e2L.txt 

/bin/grep ' Z  5 , 1 1' brain-mxo I awk '{print $8)' >> e2U.txt 
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APPENDIX C: REPLICATION OF AUTOMATED METHODS IN OTHER 
SAMPLES: VETSA AND MATR 

"Civilization advances by extending the number of important operations which we can 
perform without thinking about them. Operations of thought are like calvary in a battle- 
they are strictly limited in number, they requirefi-esh horses, and must only be made at 
decisive moments. " 

--Alfred North Whitehead, An Introduction to Mathematics, 1948 
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The construction of automated methods for the analyses of voxel-level data were 

developed fiom the sheer impossibility of a manual analysis of tens of thousands of 

measurements. However, these methods are easily generalized to other applications. 

Perhaps the most obvious is the analysis of neuroanatomic volumes, which, like voxel 

data, are continuous variables that tend to be normally distributed. Much of the analyses 

on the NIMH dataset were performed in parallel with the development of the statistical 

pipeline, and much of the time required to generate results was a consequence of the 

necessity of algorithm creation. Thus, now that that the pipeline is more well-established, 

it would be useful to assess its utility in analyses in the situation in which there are no 

delays associated with pipeline development itself. 

In collaboration with Bill Kremen at UCSD, we modified our algorithms to perform 

analyses on VETSA MRI data fiom the Vietnam Era Twin Study of Aging (VETSA), in 

a sample of 108 MZ and 1 14 DZ adult twin pairs 52-59 years of age. The resultant 

measures are volumes extracted using Freesurfer, a freeware application for the 

measurement of MRI data. Figure A3.1 shows raw correlations which, as with the NIMH 

pediatric sample, suggest high heritabilities for brain volumes. 
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Figure A3.1: Raw correlations for 37 volumetric ROls on the VETSA sample. Black lines denote 
.5 of the MZ correlation, Purple lines .25 of the DZ correlation. 

MZ (blue) and DZ (red) Correlations 
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The data were subsequently passed to our ACE R/Mx hybrid scripts specifically designed 

for iterative analyses. Figures A3.2 provides MLEs fkom this model. As in children, 

heritabilities for most regions are quite high. Surprisingly, ventricular volume heritability 

was high as well. This difference compared to the NIMH sample is likely age related. 

We also examined the effects of using ICV as a global covariate. The results from these 

models are in Figure A3.3. Surprisingly, despite decreases in residual variance (not 

shown), heritabilities remained high. Once again, age may be the causative factor here, 

although it has yet to be tested directly. 
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Figure A3.2: MLEs for the best fitting ACE models in the VETSA analysis. a2 is shown in black, c2 
in red, and e2 in blue. 95% confidence intervals also are given 

ADE models also were investigated, shown in Figure A3.3 without modification of R 

programs and only a subtle modification in Mx. The general trends were the same as with 

ACE models, with the exception that there is some evidence of dominance in ventricular 

volumes (as expected fi-om the raw correlations). Consistent with confidence interval 

calculations, submodels removing either A or D did not produce significant reductions in 

fit; however, though in no instance could both be removed. Therefore it can be concluded 

that broad sense heritability is significant for all regions of the brain, but distinguishing 

between additive and dominant genetic effects is not possible. 
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Figure A3.3: MLEs for the best fitting ACE models in the VETSA analysis in models including a 
global covariate on mean volumes. 

ACE with simultaneous 'Intracranial Vault' Regression on Means: aZ=black,c2=red,e2=Mue 

Figure A3.3: MLEs for the best fitting ADE models in the VETSA analysis. 

ADE model: black=a2,purple=d2,blue=e2 
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Interactions between individual variance components with age were performed, as shown 

in Figure A3.4. There were few significant interactions with tissue volumes, but there 

was some evidence of gene by age interactions in the ventral diencephalon, ventricular 

volumes, and white matter hypointensities. 

Figure A3.4: Log p-values for tests of variance component interaction with age. Dotted lines represent 
various p-value thresholds 

Significance of Age Interaction 

Due to the modular nature of the algorithms, the ACE Mx script could be replaced with a 

bivariate one with minimal labor. The addition of a second loop in the R script allowed 

for iteration over 2 dimensions, creating all painvise combinations of ROIs. The genetic 

correlations fiom these analyses are shown in Figure A3.5, using the clustering 

capabilities of R to identify preliminary genetic associations between the measured 

structures. These results are shown in A3.5, which are in many aspects similar to the 

results reported in chapters 9 and 10. Left and right homologues were almost always 

highly associated. Three major clusters appeared, which represented 1) lateral ventricular 

measures, 2) 3rd ventricle, 4th ventricle, and nucleus accumbens, and 3) the remainder of 

the brain. Within brain tissue, the genetic correlations roughly clustered into 1) cerebral 
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are feasible. The findings on the VETSA sample were produced with less than two days 

of human labor, and include many analyses (such as inspecting for normality) not 

reported here. Thus, the use of automation allows for rapid generation of many statistics 

fiom basic SEMs, which makes them as readily obtainable now as descriptive statistics 

have been traditionally. Implementation of these methods may lead to increased time to 

devote to more complex and hypothesis-driven multivariate models (as well as the clues 

needed to create them), and canies the potential to rapidly screen phenotypes in much the 

same way that genome-wide association scans are performed presently. 

For behavioral phenotypes, successful fusion of automation with ordinal data analyses 

will be required. Figure A3.6 demonstrates results from the first attempts to do so. Using 

calendar data on fiom the MM-I11 wave of the MATR, we analyzed an ordinal measure 

of smoking use via sequential univariate models. These analyses provide preliminary 

evidence on the trajectories of heritability throughout the lifespan. Lnterestingly, the 

shared environment appears the dominant source of covariance in adolescence, with 

genetic factors becoming most important for the remainder of the ages measured. 

Future work should aim at 1) converting many of the capabilities of the R scripts into 

functions, which will increase generalizability, 2) the ability to call a library of Mx scripts 

based on arguments provided by the user, 3) development of functions to automatically 

convert individualwise to familywise datasets, 4) a library of functions for the 

visualization of raw data to facilitate rapid communication and minimize error owed to 

false assumptions, and 5) methods to address problems associated with multiple testing 
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cortex, amygdala, and hippocampus, 2) subcortical measures and cerebellar white matter, 

and 3) cerebellar cortex. 

Figure A3.5: Genetic correlations from pairwise bivariate modeling for VETSA volumes. 
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Though these findings provide exciting new evidence on the genetic role on adult brain 

structure, they also demonstrate the advantages of using iterative algorithms to perform 

classical behavioral genetic analyses even in situations where more manual techniques 
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Figure A3.6: ACE models on semi-longitudinal data on cigarette use. Panel A plots the proportion 
of response for 6 ordinal levels of smoking b age in the complete sample. Panel B represents 
results from ACE models (a2=red, c2=blue, eYZgreen) from ages 10-50. Panel C shows a2 and c2, 
with significant results in red. 
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APPENDIX D: ODDS AND ENDS 
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Figure A4.1: Variance components MLEs for ADE model in twins only. Additive genetic variance 
is shown in the top panel, and dominance variance is shown at bottom. Uncorrected probability 
maps are . - -  shown in the inset. 
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Figure A4.2: ACE models of cerebellar subregions 
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GENERAL ABSTRACT 

Understanding the causes of individual differences in brain structure may give clues 

about the etiology of cognition, personality, and psychopathology, and also may identify 

endophenotypes for molecular genetic studies on brain development. We performed a 

comprehensive statistical genetic study of anatomic neuroimaging data from a large 

pediatric sample (N=600+) of twins and family members from the Child Psychiatry 

Branch at the NIMH. These analyses included variance decomposition of structural 

volumetric endophenotypes at several levels of resolution, voxel-level analysis of cortical 

thickness, assessment of gene by age interaction, several multivariate genetic analyses, 

and a search for genetically-mediated brain-behavioral relationships. 

These analyses found strong evidence for a genetic role in the generation of individual 

differences in brain volumes, with the exception of the cerebellum and the lateral 

ventricles. Subsequent multivariate analyses demonstrated that most of the genetic 

variance in large volumes shares a common source. More subtle analyses suggest that 

although this global genetic factor is the principal determinant of neuroanatomic 

variability, genetic factors also mediate regional variability in cortical thickness and are 

different for gray and white matter volumes. Models using graph theory show that brain 

structure follows small-world architectural rules, and that these relationships are 

genetically-determined. Structural homologues appeared to be strongly related 

genetically, which was further confirmed using novel methods for semi-multivariate 

quantitative genetic analysis at the voxel level. 

Studies on interactions with age were mixed. We found evidence of gene by environment 

interaction on frontal and temporal lobar volumes, indicating that the role of genetic 

factors on these structures dynamic during childhood. Analyses on cortical thickness at a 

finer scale, however, showed that environmental factors are more important in childhood, 

and environmental changes were responsible for most of the changes in heritability over 

this age range. When assessing the relationship between brain and behavior, we found 

weak negative genetic correlations and positive environmental correlations between IQ 

and cortical thickness, which appear to partially cancel each other out. More complex 
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models allowing for age interactions suggest that high and low IQ groups have different 

patterns of gene by age interactions in concordance with prior literature on cortical 

phenotypes. 

CHAPTER 2 

The history of genetics and statistics largely overlap. Before the discovery of molecular 

genetic tools in the twentieth century, genetics was predominantly an inferential science. 

The development of appropriate statistical methods was a necessity for identifying 

heritable traits and to observe the effects of genes within populations. Today, despite 

technological advances in the basic sciences, the use of inferential statistics remains a 

powerhl tool in elucidating thorny scientific questions, particularly when they involve 

extremely complex systems with multiple unknown or unmeasurable causal factors. 

Thus, statistical approaches retain great value when addressing general questions in 

genetics, psychology, neurobiology, and beyond. This chapter reviews the fundamental 

principles of behavioral genetics, with particular emphasis on methods central to this 

thesis. 

CHAPTER 3 

Investigations into the biology of typical neurodevelopment have greatly advanced the 

understanding of childhood psychiatric diseases. Yet despite extraordinary efforts to 

identify the molecular genetic factors influencing variability in human neuroanatomic 

volumes, this approach, thus far, has had limited success. Well-established behavioral 

genetic methodologies provide a means for investigating relationships between brain and 

behavior fiom a global perspective. Behavioral genetics, however, has only just begun to 

address neuroanatomical questions and to explore the associations between volumetric 

data and behavioral measures. Knowledge of heritability of brain endophenotypes in 

children is particularly limited. This chapter reviews the extant studies that report on the 

relative contributions of genetic and environmental influences on brain volumes via 

magnetic resonance imaging. 
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CHAPTER 4 

The importance of genetic factors in generating variability in neuroanatomic 

endophenotypes is largely unquantified, particularly for developmental samples. We 

measured several neuroanatomic volumes via high-resolution NlRI in a sample of 90 MZ 

twin pairs, 37 DZ twin pairs, and 158 unrelated singletons between the ages of 5 and 18. 

Statistical genetic analyses demonstrated high heritability for nearly all structures 

measured, with the exception of the lateral ventricles and the cerebellum. Moreover, 

allowing for changing genetic effects with age, we observed significant gene by age 

interactions in the frontal and temporal lobes, in both gray and white matter. These results 

suggest a strong and dynamic role of additive genetic differences on the population 

variability in pediatric brain structure. 

CHAPTER 5 

Using data from a large sample (N=600) of twins and family members, we combined 

voxel-level neuroimaging and statistical genetic analyses to produce the first high- 

resolution pediatric heritability maps of the human brain. The role of additive genetic 

factors on variance in cortical thickness varied substantially over the brain surface. 

Heritability was strongest in the frontal lobe (particularly on the right side and 

orbitofrontal regions bilaterally), superior parietal lobule, language centers (Broca's and 

Wernicke's area), inferior pre- and postcentral gyrus, and superior temporal gyms 

bilaterally. In contrast, heritability was quite low in the occipital lobe and the inferior 

tempro-occipital cortex. The role of shared environmental factors on variance was 

insubstantial. These findings demonstrate regional effects of genes on cortical 

development, and could aid the hunt for genetic polyrnorphisms that affect variability in 

human brain structure. 
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CHAPTER 6 

In this chapter, we have expanded our analyses of cortical thickness to allow for changes 

with age. Both genetic and environmental variance decreased in most regions, though 

genetic variance increased in the superior parietal lobule and environmental variance 

increased in superior primary motor and somatosensory cortex. As total phenotypic 

variance decreased, the relative importance of genetic factors increased in most regions, 

including superior temporal, fiontal lobes, and the superior parietal lobule. The increase 

in heritability in these regions is temporally coincident with the development of many 

cognitive functions that have been associated with them. Though underpowered, these 

results are suggestive of a dynamic process underlying both genetic and nongenetic 

contributions to cortical variability. 

CHAPTER 7 

An important component of brain mapping is an understanding of the relationships 

between neuroanatomic structures, as well as the nature of shared causal factors. Prior 

twin studies have demonstrated that much of individual differences in human anatomy 

are caused by genetic differences, but information is limited on whether different 

structures share common genetic factors. We performed a multivariate statistical 

genetic analysis on volumetric MRI measures (cerebrum, cerebellum, lateral 

ventricles, corpus callosum, thalamus, and basal ganglia) from a pediatric sample of 

326 twins and 158 singletons. Our results suggest that the great majority of 

variability in cerebrum, cerebellum, thalamus and basal ganglia is determined by a 

single genetic factor. Though most (75%) of the variability in corpus callosum was 

explained by additive genetic effects these were largely independent of other 

structures. We also observed relatively small but significant environmental effects 

common to multiple neuroanatomic regions, particularly between thalamus, basal 

ganglia, and lateral ventricles. These findings are concordant with prior volumetric 

twin studies and support radial models of brain evolution. 
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CHAPTER 8 

In this chapter, we examine the interrelationships between eight cerebral lobar volumetric 

measures via both exploratory and confirmatory factor analyses. These analyses suggest 

the presence of strong genetic correlations between cerebral structures, particularly 

between regions of like tissue type or in spatial proximity. Structural modeling estimated 

that most of the variance in all structures is associated with highly correlated lobar latent 

factors, with differences in genetic covariance and heritability driven by a common 

genetic factor that influenced gray and white matter differently. Reanalysis including 

total brain volume as a covariate dramatically reduced the total residual variance and 

disproportionately influenced the additive genetic variance in all regions of interest. 

CHAPTER 9 

Despite great interest in the role of genes in driving individual differences in cortical 

patterning, very little information on the topic is available for typically-developing 

individuals. We acquired high resolution anatomic MRI images on a large pediatric 

sample of twins, siblings of twins, and singleton families. We subsequently modeled 

familial relationships to obtain estimates of the additive genetic correlations between 54 

gyral-level measures of cortical thickness. Both cluster and principal components 

analysis revealed several factors underlying the associations. The most dominant factor 

influenced the variability of non-orbital frontal lobe structures, dorsal parietal gyri, and 

somatosensory cortex. Other networks included two distinct factors driving associations 

between occipital lobe structures, and a factor influencing variability tempro-insular 

cortex. These findings are largely concordant with other multivariate studies of brain 

structure, the twin literature, and current understanding on the role of genes in cortical 

neurodevelopment. 
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CHAPTER 10 

Multivariate statistical genetic analysis of the cortex has, thus far, been limited to the 

gyral level. In this chapter, we combine classical behavioral genetic methodologies for 

variance decomposition with novel semi-multivariate algorithms for high-resolution 

measurement of phenotypic covariance. Using these tools, we produced correlational 

maps of genetic and environmental relationships between several regions of interest and 

the cortical surface. These analyses demonstrated high, fairly uniform genetic 

correlations between the entire cortex and global mean cortical thickness. Using several 

gyri as seed regions, we found a consistent pattern of bilateral genetic correlations 

between structural homologues, with environmental correlations more restricted to the 

same hemisphere as the seed region. These findings are consistent with the limited 

existing knowledge on the genetics underlying cortical variability, as well as our prior 

multivariate studies on cortical gyri. 
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